Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 153(6): 1266-80, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23727112

RESUMEN

The DNA damage response (DDR) protein 53BP1 protects DNA ends from excessive resection in G1, and thereby favors repair by nonhomologous end-joining (NHEJ) as opposed to homologous recombination (HR). During S phase, BRCA1 antagonizes 53BP1 to promote HR. The pro-NHEJ and antirecombinase functions of 53BP1 are mediated in part by RIF1, the only known factor that requires 53BP1 phosphorylation for its recruitment to double-strand breaks (DSBs). Here, we show that a 53BP1 phosphomutant, 53BP18A, comprising alanine substitutions of the eight most N-terminal S/TQ phosphorylation sites, mimics 53BP1 deficiency by restoring genome stability in BRCA1-deficient cells yet behaves like wild-type 53BP1 with respect to immunoglobulin class switch recombination (CSR). 53BP18A recruits RIF1 but fails to recruit the DDR protein PTIP to DSBs, and disruption of PTIP phenocopies 53BP18A. We conclude that 53BP1 promotes productive CSR and suppresses mutagenic DNA repair through distinct phosphodependent interactions with RIF1 and PTIP.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Cambio de Clase de Inmunoglobulina , Proteínas Nucleares/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Animales , Linfocitos B/metabolismo , Proteína BRCA1/metabolismo , Proteínas Cromosómicas no Histona/genética , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Inestabilidad Genómica , Ratones , Mutación , Proteína 1 de Unión al Supresor Tumoral P53
2.
Immunity ; 45(2): 346-57, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27533015

RESUMEN

Hematopoietic stem cells (HSCs) undergo a functional switch in neonatal mice hallmarked by a decrease in self-renewing divisions and entry into quiescence. Here, we investigated whether the developmental attenuation of B-1a cell output is a consequence of a shift in stem cell state during ontogeny. Using cellular barcoding for in vivo single-cell fate analyses, we found that fetal liver definitive HSCs gave rise to both B-1a and B-2 cells. Whereas B-1a potential diminished in all HSCs with time, B-2 output was maintained. B-1a and B-2 plasticity could be reinitiated in a subset of adult HSCs by ectopic expression of the RNA binding protein LIN28B, a key regulator of fetal hematopoiesis, and this coincided with the clonal reversal to fetal-like elevated self-renewal and repopulation potential. These results anchor the attenuation of B-1a cell output to fetal HSC behavior and demonstrate that the developmental decline in regenerative potential represents a reversible HSC state.


Asunto(s)
Linfocitos B/fisiología , Proteínas de Unión al ADN/metabolismo , Células Madre Hematopoyéticas/fisiología , Hígado/fisiología , Subgrupos Linfocitarios/fisiología , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Plasticidad de la Célula , Autorrenovación de las Células , Células Clonales , Proteínas de Unión al ADN/genética , Femenino , Hematopoyesis/genética , Inmunofenotipificación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Unión al ARN , Análisis de la Célula Individual
3.
Genes Dev ; 30(2): 149-63, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26744420

RESUMEN

Class switch recombination (CSR) diversifies antibodies for productive immune responses while maintaining stability of the B-cell genome. Transcription at the immunoglobulin heavy chain (Igh) locus targets CSR-associated DNA damage and is promoted by the BRCT domain-containing PTIP (Pax transactivation domain-interacting protein). Although PTIP is a unique component of the mixed-lineage leukemia 3 (MLL3)/MLL4 chromatin-modifying complex, the mechanisms for how PTIP promotes transcription remain unclear. Here we dissected the minimal structural requirements of PTIP and its different protein complexes using quantitative proteomics in primary lymphocytes. We found that PTIP functions in transcription and CSR separately from its association with the MLL3/MLL4 complex and from its localization to sites of DNA damage. We identified a tandem BRCT domain of PTIP that is sufficient for CSR and identified PA1 as its main functional protein partner. Collectively, we provide genetic and biochemical evidence that a PTIP-PA1 subcomplex functions independently from the MLL3/MLL4 complex to mediate transcription during CSR. These results further our understanding of how multifunctional chromatin-modifying complexes are organized by subcomplexes that harbor unique and distinct activities.


Asunto(s)
Proteínas Portadoras/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Proteínas Nucleares/metabolismo , Daño del ADN , Proteínas de Unión al ADN , Regulación de la Expresión Génica/inmunología , Estructura Molecular , Estructura Terciaria de Proteína , Transporte de Proteínas
4.
Nature ; 535(7612): 382-7, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27443740

RESUMEN

Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11 nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations. Disruption of multiple proteins, including PARP1 and CHD4, leads to the same end point of replication fork protection, highlighting the complexities by which tumour cells evade chemotherapeutic interventions and acquire drug resistance.


Asunto(s)
Replicación del ADN/fisiología , Resistencia a Antineoplásicos/efectos de los fármacos , Eliminación de Gen , Genes BRCA1 , Genes BRCA2 , Neoplasias/patología , Proteínas Nucleares/deficiencia , Animales , Proteínas Portadoras/genética , Línea Celular Tumoral , Cisplatino/farmacología , ADN/biosíntesis , ADN/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , ADN Helicasas/genética , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos/genética , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Femenino , Recombinación Homóloga , Proteína Homóloga de MRE11 , Ratones , Neoplasias/genética , Proteínas Nucleares/genética , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética
5.
Immunity ; 37(6): 971-85, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23159437

RESUMEN

Histone 3 lysine 4 trimethylation (H3K4me3) is associated with promoters of active genes and found at hot spots for DNA recombination. Here we have shown that PAXIP1 (also known as PTIP), a protein associated with MLL3 and MLL4 methyltransferase and the DNA damage response, regulates RAG-mediated cleavage and repair during V(D)J recombination in CD4(+) CD8(+) DP thymocytes. Loss of PAXIP1 in developing thymocytes diminished Jα H3K4me3 and germline transcription, suppressed double strand break formation at 3' Jα segments, but resulted in accumulation of unresolved T cell receptor α-chain gene (Tcra) breaks. Moreover, PAXIP1 was essential for release of mature single positive (SP) αß T cells from the thymus through transcriptional activation of sphingosine-1-phosphate receptor S1pr1 as well as for natural killer T cell development. Thus, in addition to maintaining genome integrity during Tcra rearrangements, PAXIP1 controls distinct transcriptional programs during DP differentiation necessary for Tcra locus accessibility, licensing mature thymocytes for trafficking and natural killer T cell development.


Asunto(s)
Proteínas Portadoras/genética , Diferenciación Celular , Movimiento Celular , Daño del ADN , Regulación de la Expresión Génica , Proteínas Nucleares/genética , Timocitos/citología , Timocitos/inmunología , Animales , Proteínas Portadoras/metabolismo , Linaje de la Célula/genética , Movimiento Celular/genética , Proteínas de Unión al ADN , Histonas/metabolismo , Ratones , Células T Asesinas Naturales/citología , Células T Asesinas Naturales/metabolismo , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Lisoesfingolípidos/genética , Recombinación Genética , Receptores de Esfingosina-1-Fosfato , Linfocitos T/citología , Linfocitos T/metabolismo , Timocitos/metabolismo , Transcripción Genética
6.
Mol Cell ; 50(3): 309-21, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23664375

RESUMEN

Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles of histone posttranslational modifications and the significance of AID function outside of antibody diversity.


Asunto(s)
Cromatina/genética , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Daño del ADN , Reparación del ADN , ADN/genética , ADN/metabolismo , Animales , Humanos
7.
Proc Natl Acad Sci U S A ; 114(44): E9328-E9337, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078319

RESUMEN

B cell receptor signaling and downstream NF-κB activity are crucial for the maturation and functionality of all major B cell subsets, yet the molecular players in these signaling events are not fully understood. Here we use several genetically modified mouse models to demonstrate that expression of the multifunctional BRCT (BRCA1 C-terminal) domain-containing PTIP (Pax transactivation domain-interacting protein) chromatin regulator is controlled by B cell activation and potentiates steady-state and postimmune antibody production in vivo. By examining the effects of PTIP deficiency in mice at various ages during ontogeny, we demonstrate that PTIP promotes bone marrow B cell development as well as the neonatal establishment and subsequent long-term maintenance of self-reactive B-1 B cells. Furthermore, we find that PTIP is required for B cell receptor- and T:B interaction-induced proliferation, differentiation of follicular B cells during germinal center formation, and normal signaling through the classical NF-κB pathway. Together with the previously identified role for PTIP in promoting sterile transcription at the Igh locus, the present results establish PTIP as a licensing factor for humoral immunity that acts at several junctures of B lineage maturation and effector cell differentiation by controlling B cell activation.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Proteínas Portadoras/inmunología , Cromatina/inmunología , Inmunidad Humoral/inmunología , Proteínas Nucleares/inmunología , Animales , Médula Ósea/inmunología , Diferenciación Celular/inmunología , Linaje de la Célula/inmunología , Proliferación Celular/fisiología , Células Cultivadas , Proteínas de Unión al ADN , Activación de Linfocitos/inmunología , Ratones , FN-kappa B/inmunología , Transducción de Señal/inmunología
9.
Biochim Biophys Acta ; 1819(7): 733-8, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22710321

RESUMEN

Germ-line transcription of an antigen receptor gene segment is an essential feature of the targeting mechanism for DNA double-strand break formation during physiological DNA rearrangements in lymphocytes. Alterations in chromatin structure have long been postulated to regulate accessibility of recombinase activities for lymphocytes to generate antibody diversity; however, whether or not germ-line transcripts are the cause or the effect of chromatin changes at antigen receptor loci is still not clear. Methylation of histone H3 at lysine 4 is one of the most well-studied histone post-translational modifications yet we have only recently begun to understand the significance of the MLL-like H3K4 methyltransferase activities in lymphocyte function. While it is clear during lymphocyte development that H3K4me3 plays a critical role in targeting and stimulating RAG1/2 recombinase activity for V(D)J recombination, recent work suggests roles for this histone mark and different MLL-like complexes in mature B cells during immunoglobulin class-switch recombination. In this review, we focus our discussion to advances on how MLL-like complexes and H3K4 methylation may function during the germ-line transcription and recombinase targeting steps of class-switch recombination. This article is part of a Special Issue entitled: Chromatin in time and space.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/fisiología , Cambio de Clase de Inmunoglobulina , Animales , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Histona Metiltransferasas , Histonas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Receptores de Antígenos/genética , Recombinación V(D)J
10.
PLoS Genet ; 5(9): e1000650, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19763162

RESUMEN

Cornelia de Lange Syndrome (CdLS) is a multi-organ system birth defects disorder linked, in at least half of cases, to heterozygous mutations in the NIPBL gene. In animals and fungi, orthologs of NIPBL regulate cohesin, a complex of proteins that is essential for chromosome cohesion and is also implicated in DNA repair and transcriptional regulation. Mice heterozygous for a gene-trap mutation in Nipbl were produced and exhibited defects characteristic of CdLS, including small size, craniofacial anomalies, microbrachycephaly, heart defects, hearing abnormalities, delayed bone maturation, reduced body fat, behavioral disturbances, and high mortality (75-80%) during the first weeks of life. These phenotypes arose despite a decrease in Nipbl transcript levels of only approximately 30%, implying extreme sensitivity of development to small changes in Nipbl activity. Gene expression profiling demonstrated that Nipbl deficiency leads to modest but significant transcriptional dysregulation of many genes. Expression changes at the protocadherin beta (Pcdhb) locus, as well as at other loci, support the view that NIPBL influences long-range chromosomal regulatory interactions. In addition, evidence is presented that reduced expression of genes involved in adipogenic differentiation may underlie the low amounts of body fat observed both in Nipbl+/- mice and in individuals with CdLS.


Asunto(s)
Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Regulación de la Expresión Génica , Heterocigoto , Especificidad de Órganos/genética , Factores de Transcripción/genética , Transcripción Genética , Animales , Animales Recién Nacidos , Desarrollo Óseo , Huesos/anomalías , Huesos/patología , Cadherinas/genética , Cadherinas/metabolismo , Proteínas de Ciclo Celular , Anomalías Craneofaciales/complicaciones , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Anomalías Craneofaciales/fisiopatología , Síndrome de Cornelia de Lange/complicaciones , Síndrome de Cornelia de Lange/fisiopatología , Modelos Animales de Enfermedad , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/patología , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/fisiopatología , Ratones , Mutación/genética , Malformaciones del Sistema Nervioso/complicaciones , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/fisiopatología , Fenotipo , Intercambio de Cromátides Hermanas , Análisis de Supervivencia
11.
Nature ; 433(7024): 434-8, 2005 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-15647753

RESUMEN

The specific post-translational modifications to histones influence many nuclear processes including gene regulation, DNA repair and replication. Recent studies have identified effector proteins that recognize patterns of histone modification and transduce their function in downstream processes. For example, histone acetyltransferases (HATs) have been shown to participate in many essential cellular processes, particularly those associated with activation of transcription. Yeast SAGA (Spt-Ada-Gcn5 acetyltransferase) and SLIK (SAGA-like) are two highly homologous and conserved multi-subunit HAT complexes, which preferentially acetylate histones H3 and H2B and deubiquitinate histone H2B. Here we identify the chromatin remodelling protein Chd1 (chromo-ATPase/helicase-DNA binding domain 1) as a component of SAGA and SLIK. Our findings indicate that one of the two chromodomains of Chd1 specifically interacts with the methylated lysine 4 mark on histone H3 that is associated with transcriptional activity. Furthermore, the SLIK complex shows enhanced acetylation of a methylated substrate and this activity is dependent upon a functional methyl-binding chromodomain, both in vitro and in vivo. Our study identifies the first chromodomain that recognizes methylated histone H3 (Lys 4) and possibly identifies a larger subfamily of chromodomain proteins with similar recognition properties.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Acetiltransferasas/química , Secuencia de Aminoácidos , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Eliminación de Gen , Histona Acetiltransferasas , Lisina/metabolismo , Metilación , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato
12.
Biomolecules ; 12(1)2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35053209

RESUMEN

B lymphocyte development has two DNA recombination processes: V(D)J recombination of the immunoglobulin (Igh) gene variable region, and class switching of the Igh constant regions from IgM to IgG, IgA, or IgE. V(D)J recombination is required for the successful maturation of B cells from pro-B to pre-B to immature-B and then to mature B cells in the bone marrow. CSR occurs outside of the bone marrow when mature B cells migrate to peripheral lymphoid organs, such as spleen and lymph nodes. Both V(D)J recombination and CSR depend on an open chromatin state that makes DNA accessible to specific enzymes, recombination activating gene (RAG), and activation-induced cytidine deaminase (AID). Acetyltransferases GCN5 and PCAF possess redundant functions acetylating histone H3 lysine 9 (H3K9). Here, we generated a mouse model that lacked both GCN5 and PCAF in B cells. Double-deficient mice possessed low levels of mature B cells in the bone marrow and peripheral organs, an accumulation of pro-B cells in bone marrow, and reduced CSR levels. We concluded that both GCN5 and PCAF are required for B-cell development in vivo.


Asunto(s)
Acetiltransferasas , Cambio de Clase de Inmunoglobulina , Factores de Transcripción p300-CBP/metabolismo , Acetiltransferasas/genética , Animales , Linfocitos B , Cambio de Clase de Inmunoglobulina/genética , Activación de Linfocitos , Ratones , Recombinación V(D)J
13.
Nat Commun ; 9(1): 2456, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29942033

RESUMEN

Small ubiquitin-like modifiers (SUMOs) are post-translational modifications that play crucial roles in most cellular processes. While methods exist to study exogenous SUMOylation, large-scale characterization of endogenous SUMO2/3 has remained technically daunting. Here, we describe a proteomics approach facilitating system-wide and in vivo identification of lysines modified by endogenous and native SUMO2. Using a peptide-level immunoprecipitation enrichment strategy, we identify 14,869 endogenous SUMO2/3 sites in human cells during heat stress and proteasomal inhibition, and quantitatively map 1963 SUMO sites across eight mouse tissues. Characterization of the SUMO equilibrium highlights striking differences in SUMO metabolism between cultured cancer cells and normal tissues. Targeting preferences of SUMO2/3 vary across different organ types, coinciding with markedly differential SUMOylation states of all enzymes involved in the SUMO conjugation cascade. Collectively, our systemic investigation details the SUMOylation architecture across species and organs and provides a resource of endogenous SUMOylation sites on factors important in organ-specific functions.


Asunto(s)
Proteoma/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/fisiología , Ubiquitinas/metabolismo , Animales , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias/patología
14.
Mutat Res ; 618(1-2): 135-48, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17337012

RESUMEN

Over the past 10 years, much progress has been made to understand the roles of the similar, yet distinct yeast SAGA and SLIK coactivator complexes involved in histone post-translational modification and gene regulation. Many different groups have elucidated functions of the SAGA complexes including identification of novel components, which have conferred additional distinct functions. Together, recent studies demonstrate unique attributes of the SAGA coactivator complexes in histone acetylation, methylation, phosphorylation, and deubiquitination. In addition to roles in transcriptional activation with the 19S proteasome regulatory particle, recent evidence also suggests functions for SAGA in elongation and mRNA export. The modular nature of SAGA allows this approximately 1.8 MDa complex to organize its functions and carry out multiple roles during transcription, particularly under conditions of cellular stress.


Asunto(s)
Cromatina/química , Histonas/química , Acetiltransferasas/metabolismo , Animales , Cromatina/metabolismo , Metilación de ADN , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Modelos Biológicos , Mutación , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Transcripción Genética , Ubiquitina/metabolismo
15.
DNA Repair (Amst) ; 57: 133-138, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28759779

RESUMEN

DNA double-strand breaks (DSBs) are recognized and repaired by the Classical Non-Homologous End-Joining (C-NHEJ) and Homologous Recombination pathways. C-NHEJ includes the core Ku70 and Ku80 (or Ku86) heterodimer that binds DSBs and thus promotes recruitment of accessory downstream NHEJ factors XLF, PAXX, DNA-PKcs, Artemis and other core subunits, XRCC4 and DNA Ligase 4 (Lig4). In the absence of core C-NHEJ factors, DNA repair can be performed by Alternative End-Joining, which likely depends on DNA Ligase 1 and DNA Ligase 3. Genetic inactivation of C-NHEJ factors, such as Ku70, Ku80, XLF, PAXX and DNA-PKcs results in viable mice showing increased levels of genomic instability and sensitivity to DSBs. Knockouts of XRCC4 or Lig4, on the other hand, as well as combined inactivation of XLF and DNA-PKcs, or XLF and PAXX, result in late embryonic lethality in mice, which in most cases correlate with severe apoptosis in the central nervous system. Here, we demonstrate that inactivation of the Ku70 gene rescues the synthetic lethality between XLF and DNA-PKcs, resulting in triple knockout mice that are indistinguishable from Ku70-deficient littermates by size or levels of genomic instability. Moreover, we find that combined inactivation of Ku70 and XLF results in viable mice. Together, these findings suggest that Ku70 is epistatic with XLF and DNA-PKcs and support a model in which inactivation of Ku70 allows DNA lesions to become accessible to alternative DNA repair pathways.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Epistasis Genética , Autoantígeno Ku/genética , Proteínas Nucleares/genética , Mutaciones Letales Sintéticas , Animales , ADN/metabolismo , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Autoantígeno Ku/metabolismo , Ratones , Ratones Noqueados , Proteínas Nucleares/metabolismo
16.
Sci Rep ; 7: 44662, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28317934

RESUMEN

DEK is a highly conserved chromatin-bound protein whose upregulation across cancer types correlates with genotoxic therapy resistance. Loss of DEK induces genome instability and sensitizes cells to DNA double strand breaks (DSBs), suggesting defects in DNA repair. While these DEK-deficiency phenotypes were thought to arise from a moderate attenuation of non-homologous end joining (NHEJ) repair, the role of DEK in DNA repair remains incompletely understood. We present new evidence demonstrating the observed decrease in NHEJ is insufficient to impact immunoglobulin class switching in DEK knockout mice. Furthermore, DEK knockout cells were sensitive to apoptosis with NHEJ inhibition. Thus, we hypothesized DEK plays additional roles in homologous recombination (HR). Using episomal and integrated reporters, we demonstrate that HR repair of conventional DSBs is severely compromised in DEK-deficient cells. To define responsible mechanisms, we tested the role of DEK in the HR repair cascade. DEK-deficient cells were impaired for γH2AX phosphorylation and attenuated for RAD51 filament formation. Additionally, DEK formed a complex with RAD51, but not BRCA1, suggesting a potential role regarding RAD51 filament formation, stability, or function. These findings define DEK as an important and multifunctional mediator of HR, and establish a synthetic lethal relationship between DEK loss and NHEJ inhibition.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga , Proteínas Oncogénicas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Femenino , Células HeLa , Histonas/metabolismo , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/efectos de la radiación , Humanos , Masculino , Ratones Noqueados , Unión Proteica/efectos de los fármacos , Unión Proteica/efectos de la radiación , Inhibidores de Proteínas Quinasas/farmacología , Recombinasa Rad51/metabolismo , Radiación Ionizante , Proteína de Replicación A/metabolismo
17.
Sci Signal ; 9(443): rs9, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27577262

RESUMEN

The posttranslational modification of proteins by arginine methylation is functionally important, yet the breadth of this modification is not well characterized. Using high-resolution mass spectrometry, we identified 8030 arginine methylation sites within 3300 human proteins in human embryonic kidney 293 cells, indicating that the occurrence of this modification is comparable to phosphorylation and ubiquitylation. A site-level conservation analysis revealed that arginine methylation sites are less evolutionarily conserved compared to arginines that were not identified as modified by methylation. Through quantitative proteomics and RNA interference to examine arginine methylation stoichiometry, we unexpectedly found that the protein arginine methyltransferase (PRMT) family of arginine methyltransferases catalyzed methylation independently of arginine sequence context. In contrast to the frequency of somatic mutations at arginine methylation sites throughout the proteome, we observed that somatic mutations were common at arginine methylation sites in proteins involved in mRNA splicing. Furthermore, in HeLa and U2OS cells, we found that distinct arginine methyltransferases differentially regulated the functions of the pre-mRNA splicing factor SRSF2 (serine/arginine-rich splicing factor 2) and the RNA transport ribonucleoprotein HNRNPUL1 (heterogeneous nuclear ribonucleoprotein U-like 1). Knocking down PRMT5 impaired the RNA binding function of SRSF2, whereas knocking down PRMT4 [also known as coactivator-associated arginine methyltransferase 1 (CARM1)] or PRMT1 increased the RNA binding function of HNRNPUL1. High-content single-cell imaging additionally revealed that knocking down CARM1 promoted the nuclear accumulation of SRSF2, independent of cell cycle phase. Collectively, the presented human arginine methylome provides a missing piece in the global and integrative view of cellular physiology and protein regulation.


Asunto(s)
Arginina/metabolismo , Neoplasias Óseas/metabolismo , Osteosarcoma/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Arginina/química , Células HEK293 , Células HeLa , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Metilación , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteómica/métodos , Factores de Empalme Serina-Arginina/metabolismo , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas
18.
Nat Cell Biol ; 18(12): 1357-1366, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27820601

RESUMEN

DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose accurate repair by non-homologous end-joining (NHEJ) or homologous recombination (HR) is crucial for genome integrity and is strongly influenced by the local chromatin environment. Here, we identify SCAI (suppressor of cancer cell invasion) as a 53BP1-interacting chromatin-associated protein that promotes the functionality of several DSB repair pathways in mammalian cells. SCAI undergoes prominent enrichment at DSB sites through dual mechanisms involving 53BP1-dependent recruitment to DSB-surrounding chromatin and 53BP1-independent accumulation at resected DSBs. Cells lacking SCAI display reduced DSB repair capacity, hypersensitivity to DSB-inflicting agents and genome instability. We demonstrate that SCAI is a mediator of 53BP1-dependent repair of heterochromatin-associated DSBs, facilitating ATM kinase signalling at DSBs in repressive chromatin environments. Moreover, we establish an important role of SCAI in meiotic recombination, as SCAI deficiency in mice leads to germ cell loss and subfertility associated with impaired retention of the DMC1 recombinase on meiotic chromosomes. Collectively, our findings uncover SCAI as a physiologically important component of both NHEJ- and HR-mediated pathways that potentiates DSB repair efficiency in specific chromatin contexts.


Asunto(s)
Cromosomas de los Mamíferos/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Factores de Transcripción/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Línea Celular Transformada , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Heterocromatina/metabolismo , Recombinación Homóloga/genética , Humanos , Meiosis , Ratones , Unión Proteica , Transducción de Señal , Xenopus
19.
Cell Rep ; 4(4): 842-51, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23954790

RESUMEN

Recent studies have shown that lysines can be posttranslationally modified by various types of acylations. However, except for acetylation, very little is known about their scope and cellular distribution. We mapped thousands of succinylation sites in bacteria (E. coli), yeast (S. cerevisiae), human (HeLa) cells, and mouse liver tissue, demonstrating widespread succinylation in diverse organisms. A majority of succinylation sites in bacteria, yeast, and mouse liver were acetylated at the same position. Quantitative analysis of succinylation in yeast showed that succinylation was globally altered by growth conditions and mutations that affected succinyl-coenzyme A (succinyl-CoA) metabolism in the tricarboxylic acid cycle, indicating that succinylation levels are globally affected by succinyl-CoA concentration. We preferentially detected succinylation on abundant proteins, suggesting that succinylation occurs at a low level and that many succinylation sites remain unidentified. These data provide a systems-wide view of succinylation and its dynamic regulation and show its extensive overlap with acetylation.


Asunto(s)
Acilcoenzima A/metabolismo , Proteínas de Escherichia coli/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Ciclo del Ácido Cítrico , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Proteoma/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
20.
Mol Cell Biol ; 33(18): 3568-79, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23836881

RESUMEN

V(D)J recombination is initiated by the RAG endonuclease, which introduces DNA double-strand breaks (DSBs) at the border between two recombining gene segments, generating two hairpin-sealed coding ends and two blunt signal ends. ATM and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are serine-threonine kinases that orchestrate the cellular responses to DNA DSBs. During V(D)J recombination, ATM and DNA-PKcs have unique functions in the repair of coding DNA ends. ATM deficiency leads to instability of postcleavage complexes and the loss of coding ends from these complexes. DNA-PKcs deficiency leads to a nearly complete block in coding join formation, as DNA-PKcs is required to activate Artemis, the endonuclease that opens hairpin-sealed coding ends. In contrast to loss of DNA-PKcs protein, here we show that inhibition of DNA-PKcs kinase activity has no effect on coding join formation when ATM is present and its kinase activity is intact. The ability of ATM to compensate for DNA-PKcs kinase activity depends on the integrity of three threonines in DNA-PKcs that are phosphorylation targets of ATM, suggesting that ATM can modulate DNA-PKcs activity through direct phosphorylation of DNA-PKcs. Mutation of these threonine residues to alanine (DNA-PKcs(3A)) renders DNA-PKcs dependent on its intrinsic kinase activity during coding end joining, at a step downstream of opening hairpin-sealed coding ends. Thus, DNA-PKcs has critical functions in coding end joining beyond promoting Artemis endonuclease activity, and these functions can be regulated redundantly by the kinase activity of either ATM or DNA-PKcs.


Asunto(s)
Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Recombinación V(D)J , Animales , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Dominio Catalítico , Células Cultivadas , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN/química , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Endonucleasas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación , Células Precursoras de Linfocitos B/metabolismo , Dominios y Motivos de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA