Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Toxicol In Vitro ; 82: 105357, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35427737

RESUMEN

Gastric cancer (GC) is among the deadliest cancers worldwide despite available therapies, highlighting the need for novel therapies and pharmacological agents. Metabolic deregulation is a potential study area for new anticancer targets, but the in vitro metabolic studies are controversial, as different ranges of glucose used in the culture media can influence results. In this study, we evaluated cellular viability, glucose uptake, and LDH activity in gastric cancer cell lines when exposed to different glucose concentrations: high (HG, 25mM), low (LG, 5.5mM), and free (FG, 0mM) glucose media. Moreover, we evaluated how glucose variations may influence cellular phenotype and the expression of genes related to epithelial-mesenchymal transition (EMT), metabolism, and cancer development in metastatic GC cells (AGP-01). Results showed that metastatic cells exposed to FG medium evidenced higher alterations when compared to other cell lines. Most phenotypic assays did not show difference when exposed to either HG or LG media. However, gene expression profile of cells exposed to LG revealed differences in mRNA levels of metabolism-related genes when compared to HG medium. According to our results, we recommend using LG medium for metabolic studies since the glucose concentration is closer to physiological levels. These findings point out new relevant targets in metabolic reprogramming that can be alternatives to current chemotherapies in patients with metastatic GC.


Asunto(s)
Neoplasias Gástricas , Línea Celular Tumoral , Supervivencia Celular , Transición Epitelial-Mesenquimal , Glucosa/farmacología , Humanos , Neoplasias Gástricas/metabolismo
2.
Front Pharmacol ; 13: 952250, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091760

RESUMEN

Chronic myeloid leukemia (CML) is caused by constitutively active fusion protein BCR-ABL1, and targeting ABL1 is a promising therapy option. Imatinib, dasatinib, and nilotinib have all been shown to work effectively in clinical trials. ABL1 mutations, particularly the T315I gate-keeper mutation, cause resistance in patients. As a result, broad-spectrum ABL1 medicines are desperately needed. In order to screen potential drugs targeting CML, mebendazole (MBZ) was subjected to the in vitro test against CML cell lines (K562 and FEPS) and computational assays. The antiproliferative effect of MBZ and the combination with tyrosine kinase inhibitors (TKIs) was tested using end-point viability assays, cell cycle distribution analysis, cell membrane, and mitochondrial dyes. By interrupting the cell cycle and causing cell death, MBZ and its combination with imatinib and dasatinib have a significant antiproliferative effect. We identified MBZ as a promising "new use" drug targeting wild-type and mutant ABL1 using molecular docking. Meanwhile, we determined which residues in the allosteric site are important in ABL1 drug development. These findings may not only serve as a model for repositioning current authorized medications but may also provide ABL1-targeted anti-CML treatments a fresh lease of life.

3.
Toxicol In Vitro ; 66: 104839, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32243890

RESUMEN

Gastric cancer has been considering one of the worst cancer types since it is diagnosed in advanced stages, currently in the metastatic stage. Therefore, the challenge is to find out a biomarker and a pharmacology target that would help face this worldwide health issue. In this sense, the mitogen-activated protein kinase (MAPK) signaling pathway has become an important aim of the studies in several cancers. Therefore, we evaluated the role of MAPK14 (p38α) inhibitor SB-245392 in the cellular process, such as proliferation, cell death, and cell migration, and whether MAPK14 gene could be a potential biomarker in gastric cancer models. The results clearly suggest that p38α inhibition significantly impairs the cell proliferation, induces modest apoptosis and strongly inhibits cell migration of gastric cancer cell (AGP-01). Gene expression analysis showed that c-MYC level was decreased and TP53 was increased after SB-245392 treatment. Furthermore, MAPK14 was found in high levels in gastric cancer samples compared to normal samples in the TCGA database, especially in advanced stages (stage 3 and 4), which is significantly associated with low rate survival of the patients. In conclusion, the MAPK14 could be a potential biomarker for advanced gastric cancer as well as a pharmacological target, which could improve the survival rate of patients.


Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias Gástricas/genética , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Estimación de Kaplan-Meier , Proteína Quinasa 14 Activada por Mitógenos/genética , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA