Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Isr Med Assoc J ; 23(10): 625-630, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34672443

RESUMEN

BACKGROUND: Only a small proportion of schizophrenia patients present with catatonic symptoms. Imaging studies suggest that brain motor circuits are involved in the underlying pathology of catatonia. However, data about diffusivity dysregulation of these circuits in catatonic schizophrenia are scarce. OBJECTIVES: To assess the involvement of brain motor circuits in schizophrenia patients with catatonia. METHODS: Diffusion tensor imaging (DTI) was used to measure white matter signals in selected brain regions linked to motor circuits. Relevant DTI data of seven catatonic schizophrenia patients were compared to those of seven non-catatonic schizophrenia patients, matched for sex, age, and education level. RESULTS: Significantly elevated fractional anisotropy values were found in the splenium of the corpus callosum, the right peduncle of the cerebellum, and the right internal capsule of the schizophrenia patients with catatonia compared to those without catatonia. This finding showed altered diffusivity in selected motor-related brain areas. CONCLUSIONS: Catatonic schizophrenia is associated with dysregulation of the connectivity in specific motoric brain regions and corresponding circuits. Future DTI studies are needed to address the neural correlates of motor abnormalities in schizophrenia-related catatonia during the acute and remitted state of the illness to identify the specific pathophysiology of this disorder.


Asunto(s)
Imagen de Difusión Tensora/métodos , Corteza Motora , Esquizofrenia Catatónica , Adulto , Anisotropía , Cerebelo/diagnóstico por imagen , Cerebelo/fisiopatología , Conectoma/métodos , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/fisiopatología , Correlación de Datos , Manual Diagnóstico y Estadístico de los Trastornos Mentales , Femenino , Humanos , Cápsula Interna/diagnóstico por imagen , Cápsula Interna/fisiopatología , Masculino , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiopatología , Escalas de Valoración Psiquiátrica , Esquizofrenia Catatónica/diagnóstico , Esquizofrenia Catatónica/fisiopatología
2.
Radiol Oncol ; 50(1): 28-38, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27069447

RESUMEN

BACKGROUND: Electroporation-based therapies such as electrochemotherapy (ECT) and irreversible electroporation (IRE) are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB) disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This model can be used for individual treatment planning. MATERIAL AND METHODS: Cell death and BBB disruption models were developed based on the Peleg-Fermi model in combination with numerical models of the electric field. The model calculates the electric field thresholds for cell kill and BBB disruption and describes the dependence on the number of treatment pulses. The model was validated using in vivo experimental data consisting of rats brains MRIs post electroporation treatments. RESULTS: Linear regression analysis confirmed that the model described the IRE and BBB disruption volumes as a function of treatment pulses number (r(2) = 0.79; p < 0.008, r(2) = 0.91; p < 0.001). The results presented a strong plateau effect as the pulse number increased. The ratio between complete cell death and no cell death thresholds was relatively narrow (between 0.88-0.91) even for small numbers of pulses and depended weakly on the number of pulses. For BBB disruption, the ratio increased with the number of pulses. BBB disruption radii were on average 67% ± 11% larger than IRE volumes. CONCLUSIONS: The statistical model can be used to describe the dependence of treatment-effects on the number of pulses independent of the experimental setup.

3.
Fluids Barriers CNS ; 20(1): 67, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737197

RESUMEN

BACKGROUND: Pharmacological treatment of CNS diseases is limited due to the presence of the blood-brain barrier (BBB). Recent years showed significant advancement in the field of CNS drug delivery enablers, with technologies such as MR-guided focused ultrasound reaching clinical trials. This have inspired researchers in the field to invent novel brain barriers opening (BBo) technologies that are required to be simple, fast, safe and efficient. One such technology, recently developed by us, is BDF (Barrier Disrupting Fields), based on low pulsed electric fields (L-PEFs) for opening the BBB in a controlled, safe, reversible and non-invasive manner. Here, we conducted an in vivo study to show that BDF is a feasible technology for delivering Doxorubicin (Doxo) into mice brain. Means for depicting BBBo levels were developed and applied for monitoring the treatment and predicting response. Overall, the goals of the presented study were to demonstrate the feasibility for delivering therapeutic Doxo doses into naïve and tumor-bearing mice brains and applying delayed-contrast MRI (DCM) for monitoring the levels of BBBo. METHODS: L-PEFs were applied using plate electrodes placed on the intact skull of naïve mice. L-PEFs/Sham mice were scanned immediately after the procedure by DCM ("MRI experiment"), or injected with Doxo and Trypan blue followed by delayed (4 h) perfusion and brain extraction ("Doxo experiment"). Doxo concentrations were measured in brain samples using confocal microscopy and compared to IC50 of Doxo in glioma cell lines in vitro. In order to map BBBo extent throughout the brain, pixel by pixel MR image analysis was performed using the DCM data. Finally, the efficacy of L-PEFs in combination with Doxo was tested in nude mice bearing intracranial human glioma tumors. RESULTS: Significant amount of Doxo was found in cortical regions of all L-PEFs-treated mice brains (0.50 ± 0.06 µg Doxo/gr brain) while in Sham brains, Doxo concentrations were below or on the verge of detection limit (0.03 ± 0.02 µg Doxo/gr brain). This concentration was x97 higher than IC50 of Doxo calculated in gl261 mouse glioma cells and x8 higher than IC50 of Doxo calculated in U87 human glioma cells. DCM analysis revealed significant BBBo levels in the cortical regions of L-PEFs-treated mice; the average volume of BBBo in the L-PEFs-treated mice was x29 higher than in the Sham group. The calculated BBBo levels dropped exponentially as a function of BBBo threshold, similarly to the electric fields distribution in the brain. Finally, combining non-invasive L-PEFs with Doxo significantly decreased brain tumors growth rates in nude mice. CONCLUSIONS: Our results demonstrate significant BBBo levels induced by extra-cranial L-PEFs, enabling efficient delivery of therapeutic Doxo doses into the brain and reducing tumor growth. As BBBo was undetectable by standard contrast-enhanced MRI, DCM was applied to generate maps depicting the BBBo levels throughout the brain. These findings suggest that BDF is a promising technology for efficient drug delivery into the brain with important implications for future treatment of brain cancer and additional CNS diseases.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Animales , Ratones , Barrera Hematoencefálica , Ratones Desnudos , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/diagnóstico por imagen , Glioma/tratamiento farmacológico , Doxorrubicina/farmacología
4.
J Appl Toxicol ; 32(6): 409-16, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21861267

RESUMEN

Organophosphate intoxication induces neural toxicity as demonstrated in histological analysis of poisoned animals. Diffusion-weighted magnetic resonance imaging (DWMRI) enables early noninvasive characterization of biological tissues based on their water diffusion characteristics. Our objectives were to study the application of MRI for assessment of paraoxon-induced brain damage and the efficacy of antidotal treatments. Seventy-six rats were poisoned with paraoxon followed by treatment with atropine and obidoxime. The rats were then divided into five treatment groups consisting of midazolam after 1 or 30 min, scopolamine after 1 or 30 min and a no anticonvulsant treatment group. Five untreated rats served as controls. Animals underwent MRI on days 1, 8, 15, 29 and 50 post poisoning. Histological evaluation was performed on representative rat brains. Acute DWMRI effects, such as enhancement of temporal brain regions, and chronic effects such as ventricular enlargement and brain atrophy, depicted on T2-weighted MRI, were significantly more prominent in late anticonvulsant treatment groups. There was no significant difference between the neuroprotective effects of midazolam and scopolamine as shown by DWMRI. Early MRI abnormalities were found to correlate significantly with histological analysis of samples obtained 15 days post treatment. In conclusion, our results demonstrate the feasibility of using DWMRI for depiction of early cytotoxic response to paraoxon and T2-weighted MRI for later changes, thus enabling assessment of early/late brain damage as well as treatment efficacy in rats. The ability to depict these changes early and noninvasively may be applied clinically in the acute phase of organophosphate poisoning.


Asunto(s)
Antídotos/farmacología , Encefalopatías/inducido químicamente , Encéfalo/efectos de los fármacos , Inhibidores de la Colinesterasa/toxicidad , Imagen por Resonancia Magnética/métodos , Paraoxon/toxicidad , Animales , Atropina/farmacología , Encéfalo/patología , Encefalopatías/diagnóstico , Encefalopatías/metabolismo , Antagonistas Colinérgicos/farmacología , Reactivadores de la Colinesterasa/farmacología , Moduladores del GABA/farmacología , Masculino , Midazolam/farmacología , Cloruro de Obidoxima/farmacología , Ratas , Ratas Sprague-Dawley , Escopolamina/farmacología
5.
Sci Rep ; 12(1): 18078, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302937

RESUMEN

Organophosphates (OPs) are inhibitors of acetylcholinesterase and have deleterious effects on the central nervous system. Clinical manifestations of OP poisoning include convulsions, which represent an underlying toxic neuro-pathological process, leading to permanent neuronal damage. This neurotoxicity is mediated through the cholinergic, GABAergic and glutamatergic (NMDA) systems. Pharmacological interventions in OP poisoning are designed to mitigate these specific neuro-pathological pathways, using anticholinergic drugs and GABAergic agents. Benactyzine is a combined anticholinergic, anti-NMDA compound. Based on previous development of novel GABA derivatives (such as prodrugs based on perphenazine for the treatment of schizophrenia and nortriptyline against neuropathic pain), we describe the synthesis and preliminary testing of a mutual prodrug ester of benactyzine and GABA. It is assumed that once the ester crosses the blood-brain-barrier it will undergo hydrolysis, releasing benactyzine and GABA, which are expected to act synergistically. The combined release of both compounds in the brain offers several advantages over the current OP poisoning treatment protocol: improved efficacy and safety profile (where the inhibitory properties of GABA are expected to counteract the anticholinergic cognitive adverse effects of benactyzine) and enhanced chemical stability compared to benactyzine alone. We present here preliminary results of animal studies, showing promising results with early gabactyzine administration.


Asunto(s)
Sustancias para la Guerra Química , Intoxicación por Organofosfatos , Profármacos , Animales , Benactizina , Antídotos/uso terapéutico , Profármacos/farmacología , Profármacos/uso terapéutico , Organofosfatos , Acetilcolinesterasa/metabolismo , Antagonistas Colinérgicos/farmacología , Ésteres , Ácido gamma-Aminobutírico , Intoxicación por Organofosfatos/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología
6.
Pharmaceutics ; 13(2)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513968

RESUMEN

The blood-brain barrier (BBB) is a major hurdle for the treatment of central nervous system disorders, limiting passage of both small and large therapeutic agents from the blood stream into the brain. Thus, means for inducing BBB disruption (BBBd) are urgently needed. Here, we studied the application of low pulsed electrical fields (PEFs) for inducing BBBd in mice. Mice were treated by low PEFs using electrodes pressed against both sides of the skull (100-400 square 50 µs pulses at 4 Hz with different voltages). BBBd as a function of treatment parameters was evaluated using MRI-based treatment response assessment maps (TRAMs) and Evans blue extravasation. A 3D numerical model of the mouse brain and electrodes was constructed using finite element software, simulating the electric fields distribution in the brain and ensuring no significant temperature elevation. BBBd was demonstrated immediately after treatment and significant linear regressions were found between treatment parameters and the extent of BBBd. The maximal induced electric field in the mice brains, calculated by the numerical model, ranged between 62.4 and 187.2 V/cm for the minimal and maximal applied voltages. These results demonstrate the feasibility of inducing significant BBBd using non-invasive low PEFs, well below the threshold for electroporation.

7.
Bioelectrochemistry ; 134: 107521, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32251984

RESUMEN

When applying electroporation to the brain, it is important to understand the effects on the blood-brain barrier (BBB) and brain vasculature. Here we studied the effects of point-source electroporation on rats' brains as a function of time from treatment using conventional contrast-enhanced MRI and treatment response assessment maps (TRAMs), enabling depiction of subtle BBB disruption and differentiating contrast agent clearance from accumulation. Effects on vessels were also studied using Lectin staining. The TRAMs revealed that conventional contrast-enhanced MRI underestimates BBB disruption volume by nearly a factor of two, and that despite significant enhancement on standard MRI immediately post electroporation, there was no contrast accumulation in the tissue (clearance was faster than accumulation). Histology revealed significant increased vessel coverage in the treated striatum (40 ± 24% p < 0.03) immediately post electroporation, suggesting vasodilatation. Two-three hours post electroporation, both conventional MRI and TRAMs showed minor BBB disruption and histology showed decreased vessel coverage (56 ± 16%, p < 0.01), suggesting vasoconstriction. Four hours post electroporation, despite minor enhancement, the TRAMs showed significant BBB disruption with contrast accumulation, lasting over 24 h, with decreasing volumes. These results suggest that electroporation triggers several unique brain vascular mechanisms and that the optimal time window for drug administration is 4-6 h after electroporation.


Asunto(s)
Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Electroporación , Animales , Barrera Hematoencefálica/citología , Encéfalo/citología , Encéfalo/metabolismo , Imagen por Resonancia Magnética , Masculino , Ratas
8.
Sci Rep ; 10(1): 2178, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034261

RESUMEN

The prognosis of Glioblastoma Multiforme patients is poor despite aggressive therapy. Reasons include poor chemotherapy penetration across the blood-brain barrier and tumor infiltration into surrounding tissues. Here we studied the effects of combined point-source electroporation (EP) and systemic chemotherapy in glioma-bearing rats. 128 rats were studied. Treatment groups were administered systemic Cisplatin/Methotrexate before EP (either 90 or 180 pulses). Control groups were treated by EP, chemotherapy, or no treatment. Tumor volumes were determined by MRI. Tumors growth rates of the EP + Methotrexate group (1.02 ± 0.77) were significantly lower (p < 0.01) than the control (5.2 ± 1.0) 1-week post treatment. No significant difference was found compared to Methotrexate (1.7 ± 0.5). Objective response rates (ORR) were 40% and 57% for the Methotrexate and EP + Methotrexate groups respectively. Tumor growth rates and ORR of the EP + Cisplatin groups (90 pulses 0.98 ± 0.2, 57%, 180 pulses 1.2 ± 0.1, 33%) were significantly smaller than the control (6.4 ± 1.0, p < 0.01, p < 0.02, 0%) and Cisplatin (3.9 ± 1.0, p < 0.04, p < 0.05, 13%) groups. No significant differences were found between the control groups. Increased survival was found in the EP + Cisplatin group, Χ2 = 7.54, p < 0.006 (Log Rank). Point-source EP with systemic chemotherapy is a rapid, minimal-invasive treatment that was found to induce significant antineoplastic effects in a rat glioma model.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Electroporación/métodos , Glioma/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cisplatino/administración & dosificación , Cisplatino/uso terapéutico , Electroporación/instrumentación , Masculino , Metotrexato/administración & dosificación , Metotrexato/uso terapéutico , Distribución Aleatoria , Ratas , Ratas Endogámicas Lew
9.
Mol Cancer Ther ; 7(11): 3609-16, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19001442

RESUMEN

Our aim was to assess the ability of convection-enhanced drug delivery (CED), a novel approach of direct delivery of drugs into brain tissue and brain tumors, to treat brain tumors using salirasib (farsnesyl thiosalicylic acid). CED was achieved by continuous infusion of drugs via intracranial catheters, thus enabling convective distribution of high drug concentrations over large volumes while avoiding systemic toxicity. Several phase II/III CED-based trials are currently in progress but have yet to overcome two major pitfalls of this methodology (the difficulty in attaining efficient CED and the significant nonspecific neurotoxicity caused by high drug doses in the brain). In this study, we addressed both issues by employing our previously described novel CED imaging and increased efficiency methodologies to exclusively target the activated form of the Ras oncogene in a 9L gliosarcoma rat model. The drug we used was salirasib, a highly specific Ras inhibitor shown to exert its suppressive effects on growth and migration of proliferating tumor cells in in vitro and in vivo models, including human glioblastoma, without affecting normal tissues. The results show a significant decrease in tumor growth rate in salirasib-treated rats relative to vehicle-treated rats as well as a significant correlation between CED efficacy and tumor growth rate with no observed toxicity despite drug concentrations an order of magnitude higher than previously detected in the brain. The results show that CED of salirasib is efficient and nontoxic for the treatment of glioblastoma in a rat model, thus suggesting that it may be considered for clinical application.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Farnesol/análogos & derivados , Salicilatos/administración & dosificación , Animales , Antineoplásicos/metabolismo , Neoplasias Encefálicas/patología , Catéteres de Permanencia , Farnesol/administración & dosificación , Farnesol/metabolismo , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Endogámicas F344 , Salicilatos/metabolismo , Transducción de Señal , Proteínas ras/metabolismo
10.
Drug Deliv ; 26(1): 459-469, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30957567

RESUMEN

The blood-brain barrier (BBB) is limiting transcellular and paracellular movement of molecules and cells, controls molecular traffic, and keeps out toxins. However, this protective function is the major hurdle for treating brain diseases such as brain tumors, Parkinson's disease, Alzheimer's disease, etc. It was previously demonstrated that high pulsed electrical fields (PEFs) can disrupt the BBB by inducing electroporation (EP) which increases the permeability of the transcellular route. Our goal was to study the effects of low PEFs, well below the threshold of EP on the integrity and function of the BBB. Ten low voltage pulses (5-100 V) were applied to a human in vitro BBB model. Changes in permeability to small molecules (NaF) were studied as well as changes in impedance spectrum and trans-endothelial electric resistivity. Viability and EP were evaluated by Presto-Blue and endogenous Lactate dehydrogenase release assays. The effect on tight junction and adherent junction protein was also studied. The results of low voltage experiments were compared to high voltage experiments (200-1400 V). A significant increase in permeability was found at voltages as low as 10 V despite EP only occurring from 100 V. The changes in permeability as a function of applied voltage were fitted to an inverse-exponential function, suggesting a plateau effect. Staining of VE-cadherin showed specific changes in protein expression. The results indicate that low PEFs can transiently disrupt the BBB by affecting the paracellular route, although the mechanism remains unclear.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Electroporación/métodos , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Modelos Biológicos , Pericitos/metabolismo , Animales , Bovinos , Células Cultivadas , Técnicas de Cocultivo , Impedancia Eléctrica , Humanos
11.
Brain Stimul ; 12(1): 1-8, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30181107

RESUMEN

BACKGROUND: Essential tremor (ET) is one of the most common movement disorders of adults, characterized by postural and kinetic tremor. With drug treatment only partially efficient, new treatments are being developed. OBJECTIVES: The goal of this study was to demonstrate the feasibility of non-thermal focused-ultrasound (FUS) to induce tremor-suppression in an ET rat model. METHODS: Harmaline-induced tremor rats were treated with FUS along the inferior olivary (IO) system. EMG was recorded continuously during treatment in order to quantify FUS-induced tremor suppression. T2-weighted MRI was performed immediately following treatment and periodically thereafter. RESULTS: FUS treatment at an intensity of 27.2 W/cm2 (Isppa) induced significant reduction of tremor in 12 out of 13 ET rats. Tremor frequency was reduced from 6.2 ±â€¯2.8 to 2 ±â€¯1 Hz, p < 0.0003. In 6 of the 12 responding rats, tremor was completely suppressed. Response duration was 70 ±â€¯61s, on average. FUS induced motor response, depicted as movement of the tail and/or the limbs synchronized with the FUS sonication, was also demonstrated both in ET rats and in naïve rats when treated in the medulla oblongata region. CONCLUSIONS: These results demonstrate the feasibly for obtaining significant tremor reduction or tremor suppression induced by non-thermal, non-invasive, reversible focused-ultrasound.


Asunto(s)
Temblor Esencial/terapia , Terapia por Ultrasonido/métodos , Animales , Temblor Esencial/etiología , Harmalina/toxicidad , Masculino , Ratas
12.
Clin Transl Radiat Oncol ; 15: 1-6, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30547098

RESUMEN

•Of 310 brain tumors patients recruited, histology of 99 lesions was available.•Of those, 5 were histologically confirmed as radiation-induced malformations.•TRAMs cannot differentiate active tumor from vascular malformation.

13.
Circulation ; 116(11 Suppl): I38-45, 2007 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-17846324

RESUMEN

BACKGROUND: Cell labeling with superparamagnetic iron oxide (SPIO) nanoparticles enables noninvasive MRI and tracking of transplanted stem cells. We sought to determine whether mesenchymal stem cell (MSC) outcome is affected by SPIO labeling in a rat model of myocardial infarction. METHODS AND RESULTS: Rat MSCs were labeled with SPIO (ferumoxides; Endorem; Guerbet, Villepinte, France). By trypan-blue exclusion assay, almost 100% of the cells remained viable after labeling. Seven days after MI, rats were randomized to injections of 2x10(6) SPIO-labeled MSCs, 2x10(6) unlabeled MSCs, or saline. Labeled cells were visualized in the infarcted myocardium as large black spots by serial MRI studies throughout the 4-week follow-up. The presence of labeled cells was confirmed by iron staining and real-time polymerase chain reaction on postmortem specimens. At 4 weeks after transplantation, the site of cell injection was infiltrated by inflammatory cells. Costaining for iron and ED1 (resident macrophage marker) showed that the iron-positive cells were cardiac macrophages. By real-time polymerase chain reaction, the Y-chromosome-specific SRY DNA of MSCs from male donors was not detected in infarcted hearts of female recipients. Serial echocardiography studies at baseline and 4 weeks after cell transplantation showed that both unlabeled and labeled MSCs attenuated progressive left ventricular dilatation and dysfunction compared with controls. CONCLUSIONS: At 4 weeks after transplantation of SPIO-labeled MSCs, the transplanted cells are not present in the scar and the enhanced MRI signals arise from cardiac macrophages that engulfed the SPIO nanoparticles. However, both labeled and unlabeled cells attenuate left ventricular dilatation and dysfunction after myocardial infarction.


Asunto(s)
Compuestos Férricos , Trasplante de Células Madre Mesenquimatosas/métodos , Infarto del Miocardio/cirugía , Coloración y Etiquetado/métodos , Animales , Ecocardiografía/métodos , Compuestos Férricos/análisis , Magnetismo , Células Madre Mesenquimatosas/química , Infarto del Miocardio/diagnóstico por imagen , Miocardio/química , Miocardio/patología , Nanopartículas/análisis , Radiografía , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento , Remodelación Ventricular/fisiología
14.
Neuro Oncol ; 10(2): 153-61, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18316474

RESUMEN

Convection-enhanced drug delivery (CED) is a novel approach to delivering drugs into brain tissue. Drugs are delivered continuously via a catheter, enabling large volume distributions of high drug concentrations with minimum systemic toxicity. Previously we demonstrated that CED formation/extent of small molecules may be significantly improved by increasing infusate viscosities. In this study we show that the same methodology can be applied to monodispersed maghemite nanoparticles (MNPs). For this purpose we used a normal rat brain model and performed CED of MNPs over short infusion times. By adding 3% sucrose or 3%-6% polyethylene glycol (PEG; molecular weight 400) to saline containing pristine MNPs, we increased infusate viscosity and obtained increased CED efficacy. Further, we show that CED of dextran-coated MNPs (dextran-MNPs) resulted in increased efficacy over pristine MNPs (p < 0.007). To establish the use of MRI for reliable depiction of MNP distribution, CED of fluorescent dextran-MNPs was performed, demonstrating a significant correlation between the distributions as depicted by MRI and spectroscopic images (r(2) = 0.74, p < 0.0002). MRI follow-up showed that approximately 80%-90% of the dextran-MNPs were cleared from the rat brain within 40 days of CED; the rest remained in the brain for more than 4 months. MNPs have been tested for applications such as targeted drug delivery and controlled drug release and are clinically used as a contrast agent for MRI. Thus, combining the CED method with the advantages of MNPs may provide a powerful tool to treat and monitor brain tumors.


Asunto(s)
Encéfalo/diagnóstico por imagen , Convección , Infusiones Intralesiones/métodos , Imagen por Resonancia Magnética , Nanopartículas del Metal/administración & dosificación , Animales , Sistemas de Liberación de Medicamentos , Masculino , Cintigrafía , Ratas , Ratas Sprague-Dawley , Distribución Tisular
15.
Magn Reson Imaging ; 26(1): 88-102, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17574364

RESUMEN

When studying water diffusion in biological systems, any specific signal attenuation curve may be reproduced by a broad range of mathematical functions. Our goals were to quantify the diffusion and T(2) relaxation properties of water in a simple biological system and to study the changes that occur in osmotically stressed cells. Human breast cancer cells were incubated in isotonic or hypotonic osmotic buffers. Diffusion-weighted and T(2)-weighted magnetic resonance images were acquired during sedimentation over 12 h. Diffusion-weighted imaging (DWI) data were analyzed with a biexponential fit, the Kärger model for exchange between two freely diffusing populations and the Price-modified Kärger model accounting for restricted diffusion in spherical geometry. We found that only the Price model provided an accurate quantitative description for water diffusion in both cell systems, independent of acquisition parameters, over the entire density range. Model-derived cell radii, intracellular volume fractions and transmembrane water exchange times were in good agreement with results calculated from light microscopy and with model-free exchange times. T(2) data indicated two populations in fast exchange, with volume fractions clearly different from DWI populations. Hypotonic stress led to higher slow apparent diffusion coefficient, longer T(2) and lower membrane permeability. The tortuosity in a hypotonic cell suspension complied with the Wang model for spherical geometry. Quantitative characterization of biological systems is obtainable by DWI, using appropriate modeling, accounting for water restriction and exchange between compartments.


Asunto(s)
Agua Corporal/metabolismo , Neoplasias de la Mama/metabolismo , Imagen por Resonancia Magnética/métodos , Difusión , Imagen de Difusión por Resonancia Magnética , Humanos , Procesamiento de Imagen Asistido por Computador , Análisis de los Mínimos Cuadrados , Suspensiones
16.
Ultrasound Med Biol ; 44(5): 1022-1030, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29501283

RESUMEN

The goal of this study was to determine the feasibility of focused ultrasound-based neuromodulation affecting auditory evoked potentials (AEPs) in animals. Focused ultrasound-induced suppression of AEPs was performed in 22 rats and 5 pigs: Repetitive sounds were produced, and the induced AEPs were recorded before and repeatedly after FUS treatment of the auditory pathway. All treated animals exhibited a decrease in AEP amplitude post-treatment in contrast to animals undergoing the sham treatment. Suppression was weaker for rats treated at 2.3 W/cm2 (amplitudes decreased to 59.8 ± 3.3% of baseline) than rats treated at 4.6 W/cm2 (36.9 ± 7.5%, p <0.001). Amplitudes of the treated pigs decreased to 27.7 ± 5.9% of baseline. This effect lasted between 30 min and 1 mo in most treated animals. No evidence of heating during treatment or later brain damage/edema was observed. These results demonstrate the feasibility of inducing significant neuromodulation with non-thermal, non-invasive, reversible focused ultrasound. The long recovery times may have clinical implications.


Asunto(s)
Vías Auditivas/fisiopatología , Potenciales Evocados Auditivos , Ondas Ultrasónicas , Estimulación Acústica , Animales , Estudios de Factibilidad , Femenino , Masculino , Modelos Animales , Ratas , Ratas Sprague-Dawley , Porcinos
17.
Front Neurol ; 9: 1087, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619047

RESUMEN

Data from human biopsies, in-vitro and in-vivo models, strongly supports the role of thrombin, and its protease-activated receptor (PAR1) in the pathology and progression of glioblastoma (GBM), a high-grade glial tumor. Activation of PAR1 by thrombin stimulates vasogenic edema, tumor adhesion and tumor growth. We here present a novel six amino acid chloromethyl-ketone compound (SIXAC) which specifically inhibits PAR1 proteolytic activation and counteracts the over-activation of PAR1 by tumor generated thrombin. SIXAC effects were demonstrated in-vitro utilizing 3 cell-lines, including the highly malignant CNS-1 cell-line which was also used as a model for GBM in-vivo. The in-vitro effects of SIXAC on proliferation rate, invasion and thrombin activity were measured by XTT, wound healing, colony formation and fluorescent assays, respectively. The effect of SIXAC on GBM in-vivo was assessed by measuring tumor and edema size as quantified by MRI imaging, by survival follow-up and brain histopathology. SIXAC was found in-vitro to inhibit thrombin-activity generated by CNS-1 cells (IC50 = 5 × 10-11M) and significantly decrease proliferation rate (p < 0.03) invasion (p = 0.02) and colony formation (p = 0.03) of these cells. In the CNS-1 GBM rat animal model SIXAC was found to reduce edema volume ratio (8.8 ± 1.9 vs. 4.9 ± 1, p < 0.04) and increase median survival (16 vs. 18.5 days, p < 0.02 by Log rank Mental-Cox test). These results strengthen the important role of thrombin/PAR1 pathway in glioblastoma progression and suggest SIXAC as a novel therapeutic tool for this fatal disease.

18.
Circulation ; 114(1 Suppl): I94-100, 2006 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-16820652

RESUMEN

BACKGROUND: Activated macrophages have a significant role in wound healing and damaged tissue repair. We sought to explore the ability of ex vivo activated macrophages to promote healing and repair of the infarcted myocardium. METHODS AND RESULTS: Human activated macrophage suspension (AMS) was prepared from a whole blood unit obtained from young donors in a closed sterile system and was activated by a novel method of hypo-osmotic shock. The AMS (approximately 4 x 10(5) cells) included up to 43% CD14-positive cells and was injected into the ischemic myocardium of rats (n=8) immediately after coronary artery ligation. The control group (n=9) was treated with saline injection. The human cells existed in the infarcted heart 4 to 7 days after injection, as indicated by histology, human growth hormone-specific polymerase chain reaction, and magnetic resonance imaging (MRI) tracking of iron oxide-nanoparticle-labeled cells. After 5 weeks, scar vessel density (+/-SE) (25+/-4 versus 10+/-1 per mm2; P<0.05), myofibroblast accumulation, and recruitment of resident monocytes and macrophages were greater in AMS-treated hearts compared with controls. Serial echocardiography studies, before and 5 weeks after injection, showed that AMS improved scar thickening (0.15+/-0.01 versus 0.11+/-0.01 cm; P<0.05), reduced left ventricular (LV) diastolic dilatation (0.87+/-0.02 versus 0.99+/-0.04 cm; P<0.05), and improved LV fractional shortening (31+/-2 versus 20+/-4%; P<0.05), compared with controls. CONCLUSIONS: Early after myocardial infarction, injection of AMS accelerates vascularization, tissue repair, and improves cardiac remodeling and function. Our work suggests a novel clinically relevant option to promote the repair of ischemic tissue.


Asunto(s)
Activación de Macrófagos , Macrófagos/trasplante , Infarto del Miocardio/cirugía , Remodelación Ventricular , Adolescente , Adulto , Animales , Antígenos CD/análisis , Antígenos de Diferenciación Mielomonocítica/análisis , Cicatriz/patología , Femenino , Antígenos HLA-DR/análisis , Hormona de Crecimiento Humana/análisis , Humanos , Macrófagos/química , Macrófagos/fisiología , Imagen por Resonancia Magnética , Masculino , Infarto del Miocardio/patología , Neovascularización Fisiológica , Presión Osmótica , Ratas , Ratas Sprague-Dawley , Trasplante Heterólogo , Función Ventricular Izquierda , Cicatrización de Heridas
19.
Cancer Res ; 65(15): 6858-63, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16061669

RESUMEN

Convection-enhanced drug delivery (CED) is a novel approach to directly deliver drugs into brain tissue and brain tumors. It is based on delivering a continuous infusion of drugs via intracranial catheters, enabling convective distribution of high drug concentrations over large volumes of the target tissue while avoiding systemic toxicity. Efficient formation of convection depends on various physical and physiologic variables. Previous convection-based clinical trials showed significant diversity in the extent of convection among patients and drugs. Monitoring convection has proven to be an essential, yet difficult task. The current study describes the application of magnetic resonance imaging for immediate assessment of convection efficiency and early assessment of cytotoxic tissue response in a rat brain model. Immediate assessment of infusate distribution was obtained by mixing Gd-diethylenetriaminepentaacetic acid in the infusate prior to infusion. Early assessment of cytotoxic tissue response was obtained by subsequent diffusion-weighted magnetic resonance imaging. In addition, the latter imaging methodologies were used to establish the correlation between CED extent and infusate's viscosity. It was found that low-viscosity infusates tend to backflow along the catheter track, whereas high-viscosity infusates tend to form efficient convection. These results suggest that CED formation and extent may be significantly improved by increasing the infusate's viscosities, thus increasing treatment effects.


Asunto(s)
Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Animales , Encéfalo/efectos de los fármacos , Carboplatino/administración & dosificación , Carboplatino/química , Carboplatino/farmacocinética , Catéteres de Permanencia , Convección , Monitoreo de Drogas/métodos , Gadolinio DTPA/administración & dosificación , Gadolinio DTPA/farmacocinética , Imagen por Resonancia Magnética/métodos , Paclitaxel/administración & dosificación , Paclitaxel/química , Paclitaxel/farmacocinética , Ratas , Ratas Sprague-Dawley , Albúmina Sérica/administración & dosificación , Viscosidad
20.
Oncotarget ; 7(46): 74860-74871, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27556862

RESUMEN

Temozolomide (TMZ) is an alkylating agent that has become the mainstay treatment of the most malignant brain cancer, glioblastoma multiforme (GBM). Unfortunately only a limited number of patients positively respond to it. It has been shown that zinc metal reestablishes chemosensitivity but this effect has not been tested with TMZ. Using both in vitro and in vivo experimental approaches, we investigated whether addition of zinc to TMZ enhances its cytotoxicity against GBM. In vitro cell viability analysis showed that the cytotoxic activity of TMZ was substantially increased with addition of zinc and this response was accompanied by an elevation of p21, PUMA, BAX and Caspase-3 expression and a decrease in growth fraction as manifested by low ki67 and lower colony formation. Analysis of GBM as intracranial xenografts in athymic mice and administration of concurrent TMZ and zinc yielded results consistent with those of the in vitro analyses. The co-treatment resulted in significant reduction in tumor volume in TMZ/zinc treated mice relative to treatment with TMZ alone. Our results suggest that zinc may serve as a potentiator of TMZ therapy in GBM patients.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/patología , Dacarbazina/análogos & derivados , Glioblastoma/patología , Zinc/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Caspasa 3/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Dacarbazina/farmacología , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Ratones , Temozolomida , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA