Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Biochemistry ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324671

RESUMEN

We previously discovered first-in-class multitargeted 5-substituted pyrrolo[3,2-d]pyrimidine antifolates that inhibit serine hydroxymethyltransferase 2 (SHMT2), resulting in potent in vitro and in vivo antitumor efficacies. In this report, we present crystallographic structures for SHMT2 in complex with an expanded series of pyrrolo[3,2-d]pyrimidine compounds with variations in bridge length (3-5 carbons) and the side chain aromatic ring (phenyl, thiophene, fluorine-substituted phenyl, and thiophene). We evaluated structural features of the inhibitor-SHMT2 complexes and correlations to inhibitor potencies (i.e., Kis), highlighting conserved polar contacts and identifying 5-carbon bridge lengths as key determinants of inhibitor potency. Based on the analysis of SHMT2 structural data, we investigated the impact of mutation of Tyr105 in SHMT2 kinetic analysis and studies with HCT116 cells with inducible expression of wild-type and Y105F SHMT2. Increased enzyme inhibition potency by the pyrrolo[3,2-d]pyrimidine inhibitors with Phe105 SHMT2 accompanied an increased growth inhibition of Phe105-expressing HCT116 cells compared to wild-type SHMT2. Pyrrolo[3,2-d]pyrimidine inhibitors with polyglutamate modifications were evaluated for potencies against SHMT2. We determined the crystal structures of SHMT2 in complex with our lead antifolate AGF347 lacking L-glutamate, or as a diglutamate and triglutamate, for comparison with parent AGF347. These data provide the first insights into the influence of antifolate polyglutamylation on SHMT2:inhibitor interactions. Collectively, our results provide new insights into the critical structural determinants of SHMT2 binding by pyrrolo[3,2-d]pyrimidine inhibitors as novel antitumor agents, as well as the first structural characterization of human SHMT2 in complex with polyglutamates of an SHMT2-targeted antifolate.

2.
Mol Pharmacol ; 106(4): 173-187, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39048308

RESUMEN

Folate-dependent one-carbon (C1) metabolism encompasses distinct cytosolic and mitochondrial pathways connected by an interchange among serine, glycine, and formate. In both the cytosol and mitochondria, folates exist as polyglutamates, with polyglutamylation catalyzed by folylpolyglutamate synthetase (FPGS), including cytosolic and mitochondrial isoforms. Serine is metabolized by serine hydroxymethyltransferase (SHMT)2 in the mitochondria and generates glycine and C1 units for cellular biosynthesis in the cytosol. AGF347 is a novel pyrrolo[3,2-day]pyrimidine antifolate that targets SHMT2 in the mitochondria and SHMT1 and de novo purine biosynthesis in the cytosol. FPGS is expressed in primary pancreatic cancer specimens, and FPGS levels correlate with in vitro efficacies of AGF347 toward human pancreatic cancer cells. MIA PaCa-2 pancreatic cancer cells with CRISPR knockout of FPGS were engineered to express doxycycline-inducible FPGS exclusively in the cytosol (cFPGS) or in both the cytosol and mitochondria (mFPGS). Folate and AGF347 accumulations increased in both the cytosol and mitochondria with increased mFPGS but were restricted to the cytosol with cFPGS. AGF347-Glu5 inhibited SHMT2 ∼19-fold greater than AGF347 By metabolomics analysis, mFPGS stimulated the C1 flux from serine in the mitochondria and de novo purine and dTTP synthesis far greater than cFPGS. mFPGS enhanced in vitro inhibition of MIA PaCa-2 cell proliferation by AGF347 (∼30-fold) more than cFPGS (∼4.9-fold). Similar results were seen with other pyrrolo[3,2-d]pyrimidine antifolates (AGF291, AGF320); however, elevated mFPGS adversely impacted inhibition by the nonclassical SHMT2/SHMT1 inhibitor SHIN1. These results suggest a critical role of mFPGS levels in determining antitumor efficacies of mitochondrial-targeted pyrrolo[3,2-d]pyrimidine antifolates for pancreatic cancer. SIGNIFICANCE STATEMENT: AGF347 is a novel pyrrolo[3,2-d]pyrimidine antifolate that targets serine hydroxymethyltransferase (SHMT)2 in the mitochondria and SHMT1 and de novo purine biosynthesis in the cytosol. AGF347 accumulation increases with folylpolyglutamate synthetase (FPGS) levels in both the cytosol and mitochondria. Increased mitochondrial FPGS stimulated one-carbon metabolic fluxes in the cytosol and mitochondria and substantially enhanced in vitro inhibition of pancreatic cancer cells by AGF347. Mitochondrial FPGS levels play important roles in determining the antitumor efficacies of pyrrolo[3,2-d]pyrimidine antifolates for pancreatic cancer.


Asunto(s)
Citosol , Antagonistas del Ácido Fólico , Mitocondrias , Péptido Sintasas , Humanos , Péptido Sintasas/metabolismo , Péptido Sintasas/antagonistas & inhibidores , Citosol/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Antagonistas del Ácido Fólico/farmacología , Línea Celular Tumoral , Carbono/metabolismo , Antineoplásicos/farmacología , Glicina Hidroximetiltransferasa/metabolismo , Glicina Hidroximetiltransferasa/antagonistas & inhibidores , Glicina Hidroximetiltransferasa/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Ácido Fólico/metabolismo
3.
J Bacteriol ; 203(17): e0013521, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34096779

RESUMEN

Bis-(3'-5')-cyclic-dimeric GMP (c-di-GMP) is an important bacterial regulatory signaling molecule affecting biofilm formation, toxin production, motility, and virulence. The genome of Bacillus anthracis, the causative agent of anthrax, is predicted to encode ten putative GGDEF/EAL/HD-GYP-domain containing proteins. Heterologous expression in Bacillus subtilis hosts indicated that there are five active GGDEF domain-containing proteins and four active EAL or HD-GYP domain-containing proteins. Using an mCherry gene fusion-Western blotting approach, the expression of the c-di-GMP-associated proteins was observed throughout the in vitro life cycle. Of the six c-di-GMP-associated proteins found to be present in sporulating cells, four (CdgA, CdgB, CdgD, and CdgG) contain active GGDEF domains. The six proteins expressed in sporulating cells are retained in spores in a CotE-independent manner and thus are not likely to be localized to the exosporium layer of the spores. Individual deletion mutations involving the nine GGDEF/EAL protein-encoding genes and one HD-GYP protein-encoding gene did not affect sporulation efficiency, the attachment of the exosporium glycoprotein BclA, or biofilm production. Notably, expression of anthrax toxin was not affected by deletion of any of the cdg determinants. Three determinants encoding proteins with active GGDEF domains were found to affect germination kinetics. This study reveals a spore association of cyclic-di-GMP regulatory proteins and a likely role for these proteins in the biology of the B. anthracis spore. IMPORTANCE The genus Bacillus is composed of Gram-positive, rod shaped, soil-dwelling bacteria. As a mechanism for survival in the harsh conditions in soil, the organisms undergo sporulation, and the resulting spores permit the organisms to survive harsh environmental conditions. Although most species are saprophytes, Bacillus cereus and Bacillus anthracis are human pathogens and Bacillus thuringiensis is an insect pathogen. The bacterial c-di-GMP regulatory system is an important control system affecting motility, biofilm formation, and toxin production. The role of c-di-GMP has been studied in the spore-forming bacilli Bacillus subtilis, Bacillus amyloliquefaciens, B. cereus, and B. thuringiensis. However, this regulatory system has not heretofore been examined in the high-consequence zoonotic pathogen of this genus, B. anthracis.


Asunto(s)
Bacillus anthracis/metabolismo , Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Esporas Bacterianas/metabolismo , Antígenos Bacterianos/metabolismo , Bacillus anthracis/química , Bacillus anthracis/genética , Bacillus anthracis/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Dominios Proteicos , Esporas Bacterianas/química , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo
4.
Bioorg Med Chem ; 37: 116093, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33773393

RESUMEN

We discovered 6-substituted thieno[2,3-d]pyrimidine compounds (3-9) with 3-4 bridge carbons and side-chain thiophene or furan rings for dual targeting one-carbon (C1) metabolism in folate receptor- (FR) expressing cancers. Synthesis involved nine steps starting from the bromo-aryl carboxylate. From patterns of growth inhibition toward Chinese hamster ovary cells expressing FRα or FRß, the proton-coupled folate transporter or reduced folate carrier, specificity for uptake by FRs was confirmed. Anti-proliferative activities were demonstrated toward FRα-expressing KB tumor cells and NCI-IGROV1 ovarian cancer cells. Inhibition of de novo purine biosynthesis at both 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase and glycinamide ribonucleotide formyltransferase (GARFTase) was confirmed by metabolite rescue, metabolomics and enzyme assays. X-ray crystallographic structures were obtained with compounds 3-5 and human GARFTase. Our studies identify first-in-class C1 inhibitors with selective uptake by FRs and dual inhibition of enzyme targets in de novo purine biosynthesis, resulting in anti-tumor activity. This series affords an exciting new platform for selective multi-targeted anti-tumor agents.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Fosforribosilaminoimidazolcarboxamida-Formiltransferasa/antagonistas & inhibidores , Fosforribosilglicinamida-Formiltransferasa/antagonistas & inhibidores , Pirimidinas/farmacología , Tiofenos/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Células CHO , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cricetulus , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Receptores de Folato Anclados a GPI/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Fosforribosilaminoimidazolcarboxamida-Formiltransferasa/metabolismo , Fosforribosilglicinamida-Formiltransferasa/metabolismo , Unión Proteica , Pirimidinas/síntesis química , Pirimidinas/metabolismo , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(51): 13537-13542, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29196522

RESUMEN

Stator elements consisting of MotA4MotB2 complexes are anchored to the cell wall, extend through the cell membrane, and interact with FliG in the cytoplasmic C ring rotor of the flagellum. The cytoplasmic loop of MotA undergoes proton-driven conformational changes that drive flagellar rotation. Functional regulators inhibit motility by either disengaging or jamming the stator-rotor interaction. Here we show that the YcgR homolog MotI (formerly DgrA) of Bacillus subtilis inhibits motility like a molecular clutch that disengages MotA. MotI-inhibited flagella rotated freely by Brownian motion, and suppressor mutations in MotA that were immune to MotI inhibition were located two residues downstream of the critical force generation site. The 3D structure of MotI bound to c-di-GMP was solved, and MotI-fluorescent fusions localized as transient MotA-dependent puncta at the membrane when induced at subinhibitory levels. Finally, subinhibitory levels of MotI expression resulted in incomplete inhibition and proportional decreases in swimming speed. We propose a model in which flagellar stators are disengaged and sequestered from the flagellar rotor when bound by MotI.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Movimiento , Bacillus subtilis/fisiología , Unión Proteica
6.
J Bacteriol ; 200(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29311275

RESUMEN

SwrA is the master activator of flagellar biosynthesis in Bacillus subtilis, and SwrA activity is restricted by regulatory proteolysis in liquid environments. SwrA is proteolyzed by the LonA protease but requires a proteolytic adaptor protein, SmiA. Here, we show that SwrA and SmiA interact directly. To better understand SwrA activity, SwrA was randomly mutagenized and loss-of-function and gain-of-function mutants were localized primarily to the predicted unstructured C-terminal region. The loss-of-function mutations impaired swarming motility and activation from the Pfla-che promoter. The gain-of-function mutations increased protein stability but did not abolish SmiA binding, suggesting that SmiA association was a precursor to, but not sufficient for, LonA-dependent proteolysis. Finally, one allele abolished simultaneously SwrA activity and regulatory proteolysis, suggesting that the two functions may be in steric competition.IMPORTANCE SwrA is the master activator of flagellar biosynthesis in Bacillus subtilis, and its mechanism of activation is poorly understood. Moreover, SwrA levels are restricted by SmiA, the first adaptor protein reported for the Lon family of proteases. Here, we show that the C-terminal region of SwrA is important for both transcriptional activation and regulatory proteolysis. Competition between the two processes at this region may be critical for responding to cell contact with a solid surface and the initiation of swarming motility.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteolisis , Secuencia de Aminoácidos , Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Flagelos/fisiología , Regulación Bacteriana de la Expresión Génica , Movimiento , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Estabilidad Proteica , Alineación de Secuencia
7.
Biochemistry ; 55(32): 4574-82, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27439469

RESUMEN

Pemetrexed and methotrexate are antifolates used for cancer chemotherapy and inflammatory diseases. These agents have toxic side effects resulting, in part, from nonspecific cellular transport by the reduced folate carrier (RFC), a ubiquitously expressed facilitative transporter. We previously described 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with modifications of the side chain linker and aromatic ring that are poor substrates for RFC but are efficiently transported via folate receptors (FRs) and the proton-coupled folate transporter (PCFT). These targeted antifolates are cytotoxic in vitro toward FR- and PCFT-expressing tumor cells and in vivo with human tumor xenografts in immune-compromised mice, reflecting selective cellular uptake. Antitumor efficacy is due to inhibition of glycinamide ribonucleotide (GAR) formyltransferase (GARFTase) activity in de novo synthesis of purine nucleotides. This study used purified human GARFTase (formyltransferase domain) to assess in vitro inhibition by eight novel thieno- and pyrrolo[2,3-d]pyrimidine antifolates. Seven analogues (AGF23, AGF71, AGF94, AGF117, AGF118, AGF145, and AGF147) inhibited GARFTase with Ki values in the low- to mid-nanomolar concentration range, whereas AGF50 inhibited GARFTase with micromolar potency similar to that of PMX. On the basis of crystal structures of ternary complexes with GARFTase, ß-GAR, and the monoglutamyl antifolates, differences in inhibitory potencies correlated well with antifolate binding and the positions of the terminal carboxylates. Our data provide a mechanistic basis for differences in inhibitory potencies between these novel antifolates and a framework for future structure-based drug design. These analogues could be more efficacious than clinically used antifolates, reflecting their selective cellular uptake by FRs and PCFT and potent GARFTase inhibition.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/farmacología , Fosforribosilglicinamida-Formiltransferasa/antagonistas & inhibidores , Fosforribosilglicinamida-Formiltransferasa/metabolismo , Animales , Humanos , Células KB , Ratones , Modelos Moleculares , Fosforribosilglicinamida-Formiltransferasa/química , Conformación Proteica , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Proc Natl Acad Sci U S A ; 110(38): 15180-8, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23934049

RESUMEN

Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases.


Asunto(s)
Receptores de Folato Anclados a GPI/química , Antagonistas del Ácido Fólico/metabolismo , Ácido Fólico/metabolismo , Modelos Moleculares , Conformación Proteica , Animales , Células CHO , Cromatografía de Afinidad , Cricetinae , Cricetulus , Cristalización , Receptores de Folato Anclados a GPI/genética , Humanos , Estructura Molecular , Reacción en Cadena de la Polimerasa , Transporte de Proteínas/genética
9.
J Biol Chem ; 289(27): 19204-17, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24831014

RESUMEN

The copper-sensing operon repressor (CsoR) is representative of a major Cu(I)-sensing family of bacterial metalloregulatory proteins that has evolved to prevent cytoplasmic copper toxicity. It is unknown how Cu(I) binding to tetrameric CsoRs mediates transcriptional derepression of copper resistance genes. A phylogenetic analysis of 227 DUF156 protein members, including biochemically or structurally characterized CsoR/RcnR repressors, reveals that Geobacillus thermodenitrificans (Gt) CsoR characterized here is representative of CsoRs from pathogenic bacilli Listeria monocytogenes and Bacillus anthracis. The 2.56 Å structure of Cu(I)-bound Gt CsoR reveals that Cu(I) binding induces a kink in the α2-helix between two conserved copper-ligating residues and folds an N-terminal tail (residues 12-19) over the Cu(I) binding site. NMR studies of Gt CsoR reveal that this tail is flexible in the apo-state with these dynamics quenched upon Cu(I) binding. Small angle x-ray scattering experiments on an N-terminally truncated Gt CsoR (Δ2-10) reveal that the Cu(I)-bound tetramer is hydrodynamically more compact than is the apo-state. The implications of these findings for the allosteric mechanisms of other CsoR/RcnR repressors are discussed.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Operón/genética , Proteínas Represoras/metabolismo , Regulación Alostérica/efectos de los fármacos , Bacillus anthracis/genética , Proteínas Bacterianas/genética , Cobre/farmacología , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica , Geobacillus/metabolismo , Modelos Moleculares , Filogenia , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Represoras/química , Transcripción Genética
10.
Nat Chem Biol ; 9(3): 177-83, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23354287

RESUMEN

Copper resistance has emerged as an important virulence determinant of microbial pathogens. In Streptococcus pneumoniae, copper resistance is mediated by the copper-responsive repressor CopY, CupA and the copper-effluxing P(1B)-type ATPase CopA. We show here that CupA is a previously uncharacterized cell membrane-anchored Cu(I) chaperone and that a Cu(I) binding-competent, membrane-localized CupA is obligatory for copper resistance. The crystal structures of the soluble domain of CupA and the N-terminal metal-binding domain (MBD) of CopA (CopA(MBD)) reveal isostructural cupredoxin-like folds that each harbor a binuclear Cu(I) cluster unprecedented in bacterial copper trafficking. NMR studies reveal unidirectional Cu(I) transfer from the low-affinity site on the soluble domain of CupA to the high-affinity site of CopA(MBD). However, copper binding by CopA(MBD) is not essential for cellular copper resistance, consistent with a primary role of CupA in cytoplasmic Cu(I) sequestration and/or direct delivery to the transmembrane site of CopA for cellular efflux.


Asunto(s)
Proteínas Bacterianas/química , Cobre/farmacología , Farmacorresistencia Bacteriana , Streptococcus pneumoniae/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Membrana Celular/química , Membrana Celular/metabolismo , Cobre/metabolismo , Cristalografía por Rayos X , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutación/genética , Estructura Terciaria de Proteína , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/patogenicidad
11.
Appl Environ Microbiol ; 80(19): 6167-74, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25085482

RESUMEN

Microbial processes, including biofilm formation, motility, and virulence, are often regulated by changes in the available concentration of cyclic dimeric guanosine monophosphate (c-di-GMP). Generally, high c-di-GMP concentrations are correlated with decreased motility and increased biofilm formation and low c-di-GMP concentrations are correlated with an increase in motility and activation of virulence pathways. The study of c-di-GMP is complicated, however, by the fact that organisms often encode dozens of redundant enzymes that synthesize and hydrolyze c-di-GMP, diguanylate cyclases (DGCs), and c-di-GMP phosphodiesterases (PDEs); thus, determining the contribution of any one particular enzyme is challenging. In an effort to develop a facile system to study c-di-GMP metabolic enzymes, we have engineered a suite of Bacillus subtilis strains to assess the effect of individual heterologously expressed proteins on c-di-GMP levels. As a proof of principle, we characterized all 37 known genes encoding predicted DGCs and PDEs in Clostridium difficile using parallel readouts of swarming motility and fluorescence from green fluorescent protein (GFP) expressed under the control of a c-di-GMP-controlled riboswitch. We found that 27 of the 37 putative C. difficile 630 c-di-GMP metabolic enzymes had either active cyclase or phosphodiesterase activity, with agreement between our motility phenotypes and fluorescence-based c-di-GMP reporter. Finally, we show that there appears to be a threshold level of c-di-GMP needed to inhibit motility in Bacillus subtilis.


Asunto(s)
Bacillus subtilis/genética , Clostridioides difficile/genética , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/genética , Hidrolasas Diéster Fosfóricas/genética , Liasas de Fósforo-Oxígeno/genética , Bacillus subtilis/enzimología , Bacillus subtilis/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Clostridioides difficile/enzimología , Clostridioides difficile/fisiología , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Fluorescencia , Expresión Génica , Genes Reporteros , Ingeniería Genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Riboswitch/genética , Transducción de Señal , Transgenes , Virulencia
12.
Mol Cancer Ther ; 23(6): 809-822, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38377173

RESUMEN

One-carbon (C1) metabolism is compartmentalized between the cytosol and mitochondria with the mitochondrial C1 pathway as the major source of glycine and C1 units for cellular biosynthesis. Expression of mitochondrial C1 genes including SLC25A32, serine hydroxymethyl transferase (SHMT) 2, 5,10-methylene tetrahydrofolate dehydrogenase 2, and 5,10-methylene tetrahydrofolate dehydrogenase 1-like was significantly elevated in primary epithelial ovarian cancer (EOC) specimens compared with normal ovaries. 5-Substituted pyrrolo[3,2-d]pyrimidine antifolates (AGF347, AGF359, AGF362) inhibited proliferation of cisplatin-sensitive (A2780, CaOV3, IGROV1) and cisplatin-resistant (A2780-E80, SKOV3) EOC cells. In SKOV3 and A2780-E80 cells, colony formation was inhibited. AGF347 induced apoptosis in SKOV3 cells. In IGROV1 cells, AGF347 was transported by folate receptor (FR) α. AGF347 was also transported into IGROV1 and SKOV3 cells by the proton-coupled folate transporter (SLC46A1) and the reduced folate carrier (SLC19A1). AGF347 accumulated to high levels in the cytosol and mitochondria of SKOV3 cells. By targeted metabolomics with [2,3,3-2H]L-serine, AGF347, AGF359, and AGF362 inhibited SHMT2 in the mitochondria. In the cytosol, SHMT1 and de novo purine biosynthesis (i.e., glycinamide ribonucleotide formyltransferase, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) were targeted; AGF359 also inhibited thymidylate synthase. Antifolate treatments of SKOV3 cells depleted cellular glycine, mitochondrial NADH and glutathione, and showed synergistic in vitro inhibition toward SKOV3 and A2780-E80 cells when combined with cisplatin. In vivo studies with subcutaneous SKOV3 EOC xenografts in SCID mice confirmed significant antitumor efficacy of AGF347. Collectively, our studies demonstrate a unique metabolic vulnerability in EOC involving mitochondrial and cytosolic C1 metabolism, which offers a promising new platform for therapy.


Asunto(s)
Carbono , Carcinoma Epitelial de Ovario , Cisplatino , Citosol , Mitocondrias , Neoplasias Ováricas , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Femenino , Mitocondrias/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología , Apoptosis , Carbono/metabolismo , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Cisplatino/farmacología , Animales , Ratones , Citosol/metabolismo
13.
J Bacteriol ; 195(21): 4782-92, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23893111

RESUMEN

Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is an intracellular second messenger that regulates adaptation processes, including biofilm formation, motility, and virulence in Gram-negative bacteria. In this study, we have characterized the core components of a c-di-GMP signaling pathway in the model Gram-positive bacterium Bacillus subtilis. Specifically, we have directly identified and characterized three active diguanylate cyclases, DgcP, DgcK, and DgcW (formerly YtrP, YhcK, and YkoW, respectively), one active c-di-GMP phosphodiesterase, PdeH (formerly YuxH), and a cyclic-diguanylate (c-di-GMP) receptor, DgrA (formerly YpfA). Furthermore, elevation of c-di-GMP levels in B. subtilis led to inhibition of swarming motility, whereas biofilm formation was unaffected. Our work establishes paradigms for Gram-positive c-di-GMP signaling, and we have shown that the concise signaling system identified in B. subtilis serves as a powerful heterologous host for the study of c-di-GMP enzymes from bacteria predicted to possess larger, more-complex signaling systems.


Asunto(s)
Bacillus subtilis/metabolismo , GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica/fisiología , Secuencia de Aminoácidos , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , GMP Cíclico/metabolismo , Eliminación de Gen , Estructura Molecular , Unión Proteica , Transducción de Señal
14.
J Med Chem ; 66(16): 11294-11323, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37582241

RESUMEN

Multitargeted agents provide tumor selectivity with reduced drug resistance and dose-limiting toxicities. We previously described the multitargeted 6-substituted pyrrolo[3,2-d]pyrimidine antifolate 1 with activity against early- and late-stage pancreatic tumors with limited tumor selectivity. Structure-based design with our human serine hydroxymethyl transferase (SHMT) 2 and glycinamide ribonucleotide formyltransferase (GARFTase) structures, and published X-ray crystal structures of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC), SHMT1, and folate receptor (FR) α and ß afforded 11 analogues. Multitargeted inhibition and selective tumor transport were designed by providing promiscuous conformational flexibility in the molecules. Metabolite rescue identified mitochondrial C1 metabolism along with de novo purine biosynthesis as the targeted pathways. We identified analogues with tumor-selective transport via FRs and increased SHMT2, SHMT1, and GARFTase inhibition (28-, 21-, and 11-fold, respectively) compared to 1. These multitargeted agents represent an exciting new structural motif for targeted cancer therapy with substantial advantages of selectivity and potency over clinically used antifolates.


Asunto(s)
Antineoplásicos , Antagonistas del Ácido Fólico , Transferasas de Hidroximetilo y Formilo , Neoplasias , Humanos , Antineoplásicos/química , Carbono , Citosol , Antagonistas del Ácido Fólico/química , Transferasas de Hidroximetilo y Formilo/metabolismo , Mitocondrias , Neoplasias/metabolismo
15.
ACS Pharmacol Transl Sci ; 6(5): 748-770, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37200803

RESUMEN

Multitargeted agents with tumor selectivity result in reduced drug resistance and dose-limiting toxicities. We report 6-substituted thieno[2,3-d]pyrimidine compounds (3-9) with pyridine (3, 4), fluorine-substituted pyridine (5), phenyl (6, 7), and thiophene side chains (8, 9), for comparison with unsubstituted phenyl (1, 2) and thiophene side chain (10, 11) containing thieno[2,3-d]pyrimidine compounds. Compounds 3-9 inhibited proliferation of Chinese hamster ovary cells (CHO) expressing folate receptors (FRs) α or ß but not the reduced folate carrier (RFC); modest inhibition of CHO cells expressing the proton-coupled folate transporter (PCFT) by 4, 5, 6, and 9 was observed. Replacement of the side-chain 1',4'-phenyl ring with 2',5'-pyridyl, or 2',5'-pyridyl with a fluorine insertion ortho to l-glutamate resulted in increased potency toward FR-expressing CHO cells. Toward KB tumor cells, 4-9 were highly active (IC50's from 2.11 to 7.19 nM). By metabolite rescue in KB cells and in vitro enzyme assays, de novo purine biosynthesis was identified as a targeted pathway (at 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFTase) and glycinamide ribonucleotide formyltransferase (GARFTase)). Compound 9 was 17- to 882-fold more potent than previously reported compounds 2, 10, and 11 against GARFTase. By targeted metabolomics and metabolite rescue, 1, 2, and 6 also inhibited mitochondrial serine hydroxymethyl transferase 2 (SHMT2); enzyme assays confirmed inhibition of SHMT2. X-ray crystallographic structures were obtained for 4, 5, 9, and 10 with human GARFTase. This series affords an exciting new structural platform for potent multitargeted antitumor agents with FR transport selectivity.

17.
Trends Biochem Sci ; 32(9): 415-24, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17764952

RESUMEN

Riboswitches, metabolite-sensing RNA elements that are present in untranslated regions of the transcripts that they regulate, possess extensive tertiary structure to couple metabolite binding to genetic control. Here we discuss recently published structures from four riboswitch classes and compare these natural RNA structures to those of in-vitro-selected RNA aptamers, which bind ligands similar to those of the riboswitches. In addition, we examine the glmS riboswitch - the first example of a ribozyme-based riboswitch. This RNA provides the latest twist in the riboswitch field and portends exciting advances in the coming years. Our knowledge of the mechanisms underlying genetic regulation by riboswitches has increased mightily in recent years and will continue to grow as new riboswitch classes and ligands are discovered and structurally characterized.


Asunto(s)
Regulación de la Expresión Génica , ARN Catalítico , Ribosomas/fisiología , Animales , Emparejamiento Base , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Homología de Secuencia de Ácido Nucleico
18.
J Am Chem Soc ; 133(49): 19614-7, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22085181

RESUMEN

Streptococcus pneumoniae adhesin competence regulator (AdcR), the first metal-dependent member of the multiple antibiotic resistance regulator (MarR) family of proteins, represses the transcription of a high-affinity zinc-specific uptake transporter, a group of surface antigen zinc-binding pneumococcal histidine triad proteins (PhtA, PhtB, PhtD, and PhtE), and an AdcA homologue (AdcAII). The 2.0 Å resolution structure of Zn(II)-bound AdcR reveals a highly helical two-fold-symmetric dimer with two distinct metal-binding sites per protomer. Zn(II) is tetrahedrally coordinated by E24, H42, H108, and H112 in what defines the primary sensing site in AdcR. Site 2 is a tetracoordinate site whose function is currently unknown. NMR methyl group perturbation experiments reveal that Zn(II) drives a global change in the structure of apo-AdcR that stabilizes a conformation that is compatible with DNA binding. This co-repression mechanism is unprecedented in MarR transcriptional regulators.


Asunto(s)
Proteínas Bacterianas/química , Streptococcus pneumoniae/química , Zinc/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Streptococcus pneumoniae/metabolismo
19.
J Virol ; 84(3): 1607-15, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19939922

RESUMEN

In infected cells, virus components must be organized at the right place and time to ensure assembly of infectious virions. From a different perspective, assembly must be prevented until all components are available. Hypothetically, this can be achieved by allosterically controlling assembly. Consistent with this hypothesis, here we show that the structure of the hepatitis B virus (HBV) core protein dimer, which can spontaneously self-assemble, is incompatible with capsid assembly. Systematic differences between core protein dimer and capsid conformations demonstrate linkage between the intradimer interface and interdimer contact surface. These structures also provide explanations for the capsid-dimer selectivity of some antibodies and the activities of assembly effectors. Solution studies suggest that the assembly-inactive state is more accurately an ensemble of conformations. Simulations show that allostery supports controlled assembly and results in capsids that are resistant to dissociation. We propose that allostery, as demonstrated in HBV, is common to most self-assembling viruses.


Asunto(s)
Virus de la Hepatitis B/fisiología , Proteínas del Núcleo Viral/fisiología , Ensamble de Virus , Regulación Alostérica , Cristalografía por Rayos X , Dimerización , Virus de la Hepatitis B/metabolismo , Cinética , Modelos Moleculares , Conformación Proteica , Proteínas del Núcleo Viral/química
20.
Mol Cancer Ther ; 18(10): 1787-1799, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31289137

RESUMEN

Folate-dependent one-carbon (C1) metabolism is compartmentalized into the mitochondria and cytosol and supports cell growth through nucleotide and amino acid biosynthesis. Mitochondrial C1 metabolism, including serine hydroxymethyltransferase (SHMT) 2, provides glycine, NAD(P)H, ATP, and C1 units for cytosolic biosynthetic reactions, and is implicated in the oncogenic phenotype across a wide range of cancers. Whereas multitargeted inhibitors of cytosolic C1 metabolism, such as pemetrexed, are used clinically, there are currently no anticancer drugs that specifically target mitochondrial C1 metabolism. We used molecular modeling to design novel small-molecule pyrrolo[3,2-d]pyrimidine inhibitors targeting mitochondrial C1 metabolism at SHMT2. In vitro antitumor efficacy was established with the lead compounds (AGF291, AGF320, AGF347) toward lung, colon, and pancreatic cancer cells. Intracellular targets were identified by metabolic rescue with glycine and nucleosides, and by targeted metabolomics using a stable isotope tracer, with confirmation by in vitro assays with purified enzymes. In addition to targeting SHMT2, inhibition of the cytosolic purine biosynthetic enzymes, ß-glycinamide ribonucleotide formyltransferase and/or 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase, and SHMT1 was also established. AGF347 generated significant in vivo antitumor efficacy with potential for complete responses against both early-stage and upstage MIA PaCa-2 pancreatic tumor xenografts, providing compelling proof-of-concept for therapeutic targeting of SHMT2 and cytosolic C1 enzymes by this series. Our results establish structure-activity relationships and identify exciting new drug prototypes for further development as multitargeted antitumor agents.


Asunto(s)
Antineoplásicos/farmacología , Carbono/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Pirimidinas/farmacología , Pirroles/farmacología , Animales , Antineoplásicos/química , Vías Biosintéticas/efectos de los fármacos , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Citosol/efectos de los fármacos , Femenino , Concentración 50 Inhibidora , Metabolómica , Ratones SCID , Mitocondrias/efectos de los fármacos , Purinas/biosíntesis , Pirimidinas/química , Pirroles/química , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA