RESUMEN
Observational data provide invaluable real-world information in medicine, but certain methodological considerations are required to derive causal estimates. In this systematic review, we evaluated the methodology and reporting quality of individual-level patient data meta-analyses (IPD-MAs) conducted with non-randomized exposures, published in 2009, 2014, and 2019 that sought to estimate a causal relationship in medicine. We screened over 16,000 titles and abstracts, reviewed 45 full-text articles out of the 167 deemed potentially eligible, and included 29 into the analysis. Unfortunately, we found that causal methodologies were rarely implemented, and reporting was generally poor across studies. Specifically, only three of the 29 articles used quasi-experimental methods, and no study used G-methods to adjust for time-varying confounding. To address these issues, we propose stronger collaborations between physicians and methodologists to ensure that causal methodologies are properly implemented in IPD-MAs. In addition, we put forward a suggested checklist of reporting guidelines for IPD-MAs that utilize causal methods. This checklist could improve reporting thereby potentially enhancing the quality and trustworthiness of IPD-MAs, which can be considered one of the most valuable sources of evidence for health policy.
Asunto(s)
Causalidad , Metaanálisis como Asunto , Humanos , Proyectos de Investigación/normas , Lista de Verificación/métodos , Lista de Verificación/normas , Guías como Asunto , Interpretación Estadística de DatosRESUMEN
Observational data provide invaluable real-world information in medicine, but certain methodological considerations are required to derive causal estimates. In this systematic review, we evaluated the methodology and reporting quality of individual-level patient data meta-analyses (IPD-MAs) published in 2009, 2014, and 2019 that sought to estimate a causal relationship in medicine. We screened over 16,000 titles and abstracts, reviewed 45 full-text articles out of the 167 deemed potentially eligible, and included 29 into the analysis. Unfortunately, we found that causal methodologies were rarely implemented, and reporting was generally poor across studies. Specifically, only three of the 29 articles used quasi-experimental methods, and no study used G-methods to adjust for time-varying confounding. To address these issues, we propose stronger collaborations between physicians and methodologists to ensure that causal methodologies are properly implemented in IPD-MAs. In addition, we put forward a suggested checklist of reporting guidelines for IPD-MAs that utilize causal methods. This checklist could improve reporting thereby potentially enhancing the quality and trustworthiness of IPD-MAs, which can be considered one of the most valuable sources of evidence for health policy.
RESUMEN
OBJECTIVES: Among ID studies seeking to make causal inferences and pooling individual-level longitudinal data from multiple infectious disease cohorts, we sought to assess what methods are being used, how those methods are being reported, and whether these factors have changed over time. STUDY DESIGN AND SETTING: Systematic review of longitudinal observational infectious disease studies pooling individual-level patient data from 2+ studies published in English in 2009, 2014, or 2019. This systematic review protocol is registered with PROSPERO (CRD42020204104). RESULTS: Our search yielded 1,462 unique articles. Of these, 16 were included in the final review. Our analysis showed a lack of causal inference methods and of clear reporting on methods and the required assumptions. CONCLUSION: There are many approaches to causal inference which may help facilitate accurate inference in the presence of unmeasured and time-varying confounding. In observational ID studies leveraging pooled, longitudinal IPD, the absence of these causal inference methods and gaps in the reporting of key methodological considerations suggests there is ample opportunity to enhance the rigor and reporting of research in this field. Interdisciplinary collaborations between substantive and methodological experts would strengthen future work.
Asunto(s)
Enfermedades Transmisibles , Causalidad , Enfermedades Transmisibles/epidemiología , Humanos , Estudios LongitudinalesRESUMEN
Research on segregation of immigrant groups is increasingly turning its attention from residential areas toward other important places, such as the workplace, where immigrants can meet and interact with members of the native population. This article examines workplace segregation of immigrants. We use longitudinal, georeferenced Swedish population register data, which enables us to observe all immigrants in Sweden for the period 1990-2005 on an annual basis. We compare estimates from ordinary least squares with fixed-effects regressions to quantify the extent of immigrants' self-selection into specific workplaces, neighborhoods, and partnerships, which may bias more naïve ordinary least squares results. In line with previous research, we find lower levels of workplace segregation than residential segregation. The main finding is that low levels of residential segregation reduce workplace segregation, even after we take into account intermarriage with natives as well as unobserved characteristics of immigrants' such as willingness and ability to integrate into the host society. Being intermarried with a native reduces workplace segregation for immigrant men but not for immigrant women.