RESUMEN
The complement system plays a pivotal role in the pathogenesis of ischemia-reperfusion injury in solid organ transplantation. Mirococept is a potent membrane-localizing complement inhibitor that can be administered ex vivo to the donor kidney prior to transplantation. To evaluate the efficacy of Mirococept in reducing delayed graft function (DGF) in deceased donor renal transplantation, we undertook the efficacy of mirococept (APT070) for preventing ischaemia-reperfusion injury in the kidney allograft (EMPIRIKAL) trial (ISRCTN49958194). A dose range of 5-25 mg would be tested, starting with 10 mg in cohort 1. No significant difference between Mirococept at 10 mg and control was detected; hence the study was stopped to enable a further dose saturation study in a porcine kidney model. The optimal dose of Mirococept in pig kidney was 80 mg. This dose did not induce any additional histological damage compared to controls or after a subsequent 3 hours of normothermic machine perfusion. The amount of unbound Mirococept postperfusion was found to be within the systemic dose range considered safe in the Phase I trial. The ex vivo administration of Mirococept is a safe and feasible approach to treat DGF in deceased donor kidney transplantation. The porcine kidney study identified an optimal dose of 80 mg (equivalent to 120 mg in human kidney) that provides a basis for further clinical development.
Asunto(s)
Trasplante de Riñón , Daño por Reperfusión , Animales , Inactivadores del Complemento , Funcionamiento Retardado del Injerto/tratamiento farmacológico , Funcionamiento Retardado del Injerto/prevención & control , Supervivencia de Injerto , Humanos , Riñón , Trasplante de Riñón/efectos adversos , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Porcinos , Donantes de TejidosRESUMEN
Background: 3% of kidney transplant recipients return to dialysis annually upon allograft failure. Development of antibodies (Ab) against human leukocyte antigens (HLA) is a validated prognostic biomarker of allograft failure. We tested whether screening for HLA Ab, combined with an intervention to improve adherence and optimization of immunosuppression could prevent allograft failure. Methods: Prospective, open-labelled randomised biomarker-based strategy (hybrid) trial in 13 UK transplant centres [EudraCT (2012-004308-36) and ISRCTN (46157828)]. Patients were randomly allocated (1:1) to unblinded or double-blinded arms and screened every 8 months. Unblinded HLA Ab+ patients were interviewed to encourage medication adherence and had tailored optimisation of Tacrolimus, Mycophenolate mofetil and Prednisolone. The primary outcome was time to graft failure in an intention to treat analysis. The trial had 80% power to detect a hazard ratio of 0.49 in donor specific antibody (DSA)+ patients. Findings: From 11/9/13 to 27/10/16, 5519 were screened for eligibility and 2037 randomised (1028 to unblinded care and 1009 to double blinded care). We identified 198 with DSA and 818 with non-DSA. Development of DSA, but not non-DSA was predictive of graft failure. HRs for graft failure in unblinded DSA+ and non-DSA+ groups were 1.54 (95% CI: 0.72 to 3.30) and 0.97 (0.54-1.74) respectively, providing no evidence of an intervention effect. Non-inferiority for the overall unblinded versus blinded comparison was not demonstrated as the upper confidence limit of the HR for graft failure exceeded 1.4 (1.02, 95% CI: 0.72 to 1.44). The only secondary endpoint reduced in the unblinded arm was biopsy-proven rejection. Interpretation: Intervention to improve adherence and optimize immunosuppression does not delay failure of renal transplants after development of DSA. Whilst DSA predicts increased risk of allograft failure, novel interventions are needed before screening can be used to direct therapy. Funding: The National Institute for Health Research Efficacy and Mechanism Evaluation programme grant (ref 11/100/34).
RESUMEN
BACKGROUND: Renal transplantation is the best treatment for kidney failure, in terms of length and quality of life and cost-effectiveness. However, most transplants fail after 10 to 12 years, consigning patients back onto dialysis. Damage by the immune system accounts for approximately 50% of failing transplants and it is possible to identify patients at risk by screening for the presence of antibodies against human leukocyte antigens. However, it is not clear how best to treat patients with antibodies. This trial will test a combined screening and treatment protocol in renal transplant recipients. METHODS/DESIGN: Recipients>1 year post-transplantation, aged 18 to 70 with an estimated glomerular filtration rate>30 mL/min will be randomly allocated to blinded or unblinded screening arms, before being screened for the presence of antibodies. In the unblinded arm, test results will be revealed. Those with antibodies will have biomarker-led care, consisting of a change in their anti-rejection drugs to prednisone, tacrolimus and mycophenolate mofetil. In the blinded arm, screening results will be double blinded and all recruits will remain on current therapy (standard care). In both arms, those without antibodies will be retested every 8 months for 3 years. The primary outcome is the 3-year kidney failure rate for the antibody-positive recruits, as measured by initiation of long-term dialysis or re-transplantation, predicted to be approximately 20% in the standard care group but <10% in biomarker-led care. The secondary outcomes include the rate of transplant dysfunction, incidence of infection, cancer and diabetes mellitus, an analysis of adherence with medication and a health economic analysis of the combined screening and treatment protocol. Blood samples will be collected and stored every 4 months and will form the basis of separately funded studies to identify new biomarkers associated with the outcomes. DISCUSSION: We have evidence that the biomarker-led care regime will be effective at preventing graft dysfunction and expect this to feed through to graft survival. This trial will confirm the benefit of routine screening and lead to a greater understanding of how to keep kidney transplants working longer. TRIAL REGISTRATION: Current Controlled Trials ISRCTN46157828.