Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 52(3): 325-39, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24095281

RESUMEN

Active metabolism regulates oocyte cell death via calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated phosphorylation of caspase-2, but the link between metabolic activity and CaMKII is poorly understood. Here we identify coenzyme A (CoA) as the key metabolic signal that inhibits Xenopus laevis oocyte apoptosis by directly activating CaMKII. We found that CoA directly binds to the CaMKII regulatory domain in the absence of Ca(2+) to activate CaMKII in a calmodulin-dependent manner. Furthermore, we show that CoA inhibits apoptosis not only in X. laevis oocytes but also in Murine oocytes. These findings uncover a direct mechanism of CaMKII regulation by metabolism and further highlight the importance of metabolism in preserving oocyte viability.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Coenzima A/metabolismo , Oocitos/metabolismo , Xenopus laevis/metabolismo , Animales , Apoptosis/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Caspasa 2/metabolismo , Supervivencia Celular/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Oocitos/crecimiento & desarrollo , Fosforilación/genética , Unión Proteica , Transducción de Señal , Activación Transcripcional , Xenopus laevis/crecimiento & desarrollo
2.
J Biol Chem ; 288(13): 8838-48, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23400775

RESUMEN

The metabolism of the Xenopus laevis egg provides a cell survival signal. We found previously that increased carbon flux from glucose-6-phosphate (G6P) through the pentose phosphate pathway in egg extracts maintains NADPH levels and calcium/calmodulin regulated protein kinase II (CaMKII) activity to phosphorylate caspase 2 and suppress cell death pathways. Here we show that the addition of G6P to oocyte extracts inhibits the dephosphorylation/inactivation of CaMKII bound to caspase 2 by protein phosphatase 1. Thus, G6P sustains the phosphorylation of caspase 2 by CaMKII at Ser-135, preventing the induction of caspase 2-mediated apoptotic pathways. These findings expand our understanding of oocyte biology and clarify mechanisms underlying the metabolic regulation of CaMKII and apoptosis. Furthermore, these findings suggest novel approaches to disrupt the suppressive effects of the abnormal metabolism on cell death pathways.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Xenopus laevis/metabolismo , Animales , Apoptosis , Caspasa 2/metabolismo , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Muerte Celular , Proliferación Celular , Espectrometría de Masas/métodos , Oocitos/metabolismo , Oxígeno/metabolismo , Péptidos/química , Fosforilación , Proteína Fosfatasa 1/metabolismo , Proteínas Recombinantes/metabolismo , Sefarosa/química , Serina/química , Xenopus/metabolismo
3.
Methods Mol Biol ; 1133: 119-40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24567099

RESUMEN

The study of apoptosis and caspases has advanced greatly over recent decades. Studies conducted in the Xenopus laevis egg extract and oocyte model system have significantly contributed to these advances. Twenty years ago, Newmeyer and colleagues first showed that the X. laevis egg extract, when incubated at room temperature, reconstituted the key molecular events of cellular apoptosis including cytochrome c release, nuclear condensation, internucleosomal fragmentation, and caspase activation. The biochemical tractability of the egg extract system allows for robust study of apoptotic events and caspase activation. Its nature as a cell-free extract system allows substrates to be very simply added by pipette, and their effects on apoptosis and caspase activation and their placement in the apoptotic signaling pathway (e.g., pre- or post-mitochondrial) are subsequently very simply studied using the techniques described in this chapter. Also described in this chapter are assays that allow the study of caspase activation in intact oocytes, another valuable tool available when using the X. laevis model organism. Overall, the X. laevis egg extract/oocyte model is a robust, efficient, and biochemically tractable system that is ideal for the study of apoptosis and caspase activation.


Asunto(s)
Apoptosis/genética , Caspasas/aislamiento & purificación , Biología Molecular/métodos , Animales , Caspasas/genética , Sistema Libre de Células/enzimología , Oocitos/enzimología , Xenopus laevis
4.
Eur J Cancer ; 50(15): 2685-94, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25087182

RESUMEN

BACKGROUND: Asparaginase and steroids can cause hypertriglyceridaemia in children with acute lymphoblastic leukaemia (ALL). There are no guidelines for screening or management of patients with severe hypertriglyceridaemia (>1000mg/dL) during ALL therapy. PATIENTS AND METHODS: Fasting lipid profiles were obtained prospectively at four time-points for 257 children consecutively enrolled on a frontline ALL study. Risk factors were evaluated by the exact chi-square test. Details of adverse events and management of hypertriglyceridaemia were extracted retrospectively. RESULTS: Eighteen of 257 (7%) patients developed severe hypertriglyceridaemia. Older age and treatment with higher doses of asparaginase and steroids on the standard/high-risk arm were significant risk factors. Severe hypertriglyceridaemia was not associated with pancreatitis after adjustment for age and treatment arm or with osteonecrosis after adjustment for age. However, patients with severe hypertriglyceridaemia had a 2.5-3 times higher risk of thrombosis compared to patients without, albeit the difference was not statistically significant. Of the 30 episodes of severe hypertriglyceridaemia in 18 patients, seven were managed conservatively while the others with pharmacotherapy. Seventeen of 18 patients continued to receive asparaginase and steroids. Triglyceride levels normalised after completion of ALL therapy in all 12 patients with available measurements. CONCLUSION: Asparaginase- and steroid-induced transient hypertriglyceridaemia can be adequately managed with dietary modifications and close monitoring without altering chemotherapy. Patients with severe hypertriglyceridaemia were not at increased risk of adverse events, with a possible exception of thrombosis. The benefit of pharmacotherapy in decreasing symptoms and potential complications requires further investigation.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Hipertrigliceridemia/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Asparaginasa/administración & dosificación , Asparaginasa/efectos adversos , Niño , Dexametasona/administración & dosificación , Dexametasona/efectos adversos , Ayuno/sangre , Femenino , Glucocorticoides/administración & dosificación , Glucocorticoides/efectos adversos , Humanos , Hipertrigliceridemia/inducido químicamente , Lípidos/sangre , Masculino , Osteonecrosis/inducido químicamente , Osteonecrosis/diagnóstico , Pancreatitis/inducido químicamente , Pancreatitis/diagnóstico , Polietilenglicoles/administración & dosificación , Polietilenglicoles/efectos adversos , Estudios Prospectivos , Inducción de Remisión , Medición de Riesgo/estadística & datos numéricos , Factores de Riesgo , Índice de Severidad de la Enfermedad , Tromboembolia/inducido químicamente , Tromboembolia/diagnóstico , Resultado del Tratamiento
5.
Dev Cell ; 16(6): 856-66, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19531356

RESUMEN

Xenopus oocyte death is partly controlled by the apoptotic initiator caspase-2 (C2). We reported previously that oocyte nutrient depletion activates C2 upstream of mitochondrial cytochrome c release. Conversely, nutrient-replete oocytes inhibit C2 via S135 phosphorylation catalyzed by calcium/calmodulin-dependent protein kinase II. We now show that C2 phosphorylated at S135 binds 14-3-3zeta, thus preventing C2 dephosphorylation. Moreover, we determined that S135 dephosphorylation is catalyzed by protein phosphatase-1 (PP1), which directly binds C2. Although C2 dephosphorylation is responsive to metabolism, neither PP1 activity nor binding is metabolically regulated. Rather, release of 14-3-3zeta from C2 is controlled by metabolism and allows for C2 dephosphorylation. Accordingly, a C2 mutant unable to bind 14-3-3zeta is highly susceptible to dephosphorylation. Although this mechanism was initially established in Xenopus, we now demonstrate similar control of murine C2 by phosphorylation and 14-3-3 binding in mouse eggs. These findings provide an unexpected evolutionary link between 14-3-3 and metabolism in oocyte death.


Asunto(s)
Proteínas 14-3-3/metabolismo , Apoptosis , Caspasa 2/metabolismo , Oocitos/citología , Oocitos/enzimología , Proteína Fosfatasa 1/metabolismo , Animales , Activación Enzimática , Femenino , Ratones , Fosforilación , Unión Proteica , Xenopus
6.
Cell ; 127(4): 759-73, 2006 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-17110335

RESUMEN

DNA-responsive checkpoints prevent cell-cycle progression following DNA damage or replication inhibition. The mitotic activator Cdc25 is suppressed by checkpoints through inhibitory phosphorylation at Ser287 (Xenopus numbering) and docking of 14-3-3. Ser287 phosphorylation is a major locus of G2/M checkpoint control, although several checkpoint-independent kinases can phosphorylate this site. We reported previously that mitotic entry requires 14-3-3 removal and Ser287 dephosphorylation. We show here that DNA-responsive checkpoints also activate PP2A/B56delta phosphatase complexes to dephosphorylate Cdc25 at a site distinct from Ser287 (T138), the phosphorylation of which is required for 14-3-3 release. However, phosphorylation of T138 is not sufficient for 14-3-3 release from Cdc25. Our data suggest that creation of a 14-3-3 "sink," consisting of phosphorylated 14-3-3 binding intermediate filament proteins, including keratins, coupled with reduced Cdc25-14-3-3 affinity, contribute to Cdc25 activation. These observations identify PP2A/B56delta as a central checkpoint effector and suggest a mechanism for controlling 14-3-3 interactions to promote mitosis.


Asunto(s)
Proteínas 14-3-3/metabolismo , Mitosis , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Fosfatasas cdc25/metabolismo , Animales , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Replicación del ADN , Activación Enzimática , Células HCT116 , Células HeLa , Holoenzimas/metabolismo , Humanos , Filamentos Intermedios/metabolismo , Interfase , Queratinas/metabolismo , Fosforilación , Fosfotreonina/metabolismo , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2 , Subunidades de Proteína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA