Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502624

RESUMEN

Remote sensing techniques currently used to detect oil spills have not yet demonstrated their applicability to dispersed forms of oil. However, oil droplets dispersed in seawater are known to modify the local optical properties and, consequently, the upwelling light flux. Theoretically possible, passive remote detection of oil droplets was never tested in the offshore conditions. This study presents a field experiment which demonstrates the capability of commercially available sensors to detect significant changes in the remote sensing reflectance Rrs of seawater polluted by six types of dispersed oils (two crude oils, cylinder lubricant, biodiesel, and two marine gear lubricants). The experiment was based on the comparison of the upwelling radiance Lu measured in a transparent tank floating in full immersion in seawater in the Southern Baltic Sea. The tank was first filled with natural seawater and then polluted by dispersed oils in five consecutive concentrations of 1-15 ppm. After addition of dispersed oils, spectra of Rrs noticeably increased and the maximal increase varied from 40% to over three-fold at the highest oil droplet concentration. Moreover, the most affected Rrs band ratios and band differences were analyzed and are discussed in the context of future construction of algorithms for dispersed oil detection.


Asunto(s)
Contaminación por Petróleo , Petróleo , Aceites , Contaminación por Petróleo/análisis , Tecnología de Sensores Remotos , Agua de Mar
2.
Sensors (Basel) ; 19(18)2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546821

RESUMEN

Many standard methods used for the remote sensing of ocean colour have been developed, though mainly for clean, open ocean waters. This means that they may not always be effective in complex waters potentially containing high concentrations of optically significant constituents. This paper presents new empirical formulas for estimating selected inherent optical properties of water from remote-sensing reflectance spectra Rrs(λ), derived, among other things, for waters with high concentrations of dissolved and suspended substances. These formulas include one for estimating the backscattering coefficient bb(620) directly from the magnitude of Rrs in the red part of the spectrum, and another for estimating the absorption coefficient a(440) from the hue angle α. The latter quantity represents the water's colour as it might be perceived by the human eye (trichromatic colour vision); it is easily calculated from the shape of the Rrs spectrum. These new formulas are based on a combined dataset. Most of the data were obtained in the specific, optically complex environment of the Baltic Sea. Additional data, taken from the NASA bio-Optical Marine Algorithm Dataset (NOMAD) and representing various regions of the global oceans, were used to widen the potential applicability of the new formulas. We indicate the reasons why these simple empirical relationships can be derived and compare them with the results of straightforward modelling; possible applications are also described. We present, among other things, an example of a simple semi-analytical algorithm using both new empirical formulas. This algorithm is a modified version of the well-known quasi-analytical algorithm (QAA), and it can improve the results obtained in optically complex waters. This algorithm allows one to estimate the full spectra of the backscattering and absorption coefficients, without the need for any additional a priori assumptions regarding the spectral shape of absorption by dissolved and suspended seawater constituents.

3.
Sci Total Environ ; 852: 158533, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36067858

RESUMEN

Foraging ecology of chick rearing seabirds is affected mainly by the food availability on feeding grounds, but it can be also modulated by environmental conditions during the foraging trip, in that wind force. Considering predicted strengthening of surface winds over the Arctic Ocean, this factor may have a growing impact on the foraging performance of Arctic seabirds. Here, we studied how wind speed could affect prey accessibility for the High Arctic zooplanktivorous seabird, the little auk Alle alle breeding in Svalbard in 2015-2019. First, we estimated availability of its preferred prey, a cold water copepod Calanus glacialis, based on wider-scale mesozooplankton biomass model and environmental conditions. Then we estimated prey accessibility by including wind speed, the factor affecting the flapping flight performance of little auks commuting from/to the colony. Finally, we compared reproductive performance of the little auks (chick diet, growth rate and survival and duration of foraging flights of adults) between the studied years differing in wind and food availability conditions. We found that wind speed could affect significantly food accessibility for a zooplanktivorous seabird. Despite high spatial and temporal variability in prey availability and accessibility in shelf waters of SW Spitsbergen, interannual differences in duration of foraging flights and chick growth rate, little auks were able to sustain high breeding success confirming their capacity to buffer suboptimal foraging conditions. Our multidisciplinary work, combining multi-year remote sensing of oceanographic conditions, zooplankton availability and accessibility modelling, little auks diet composition and chick growth and survival emphasizes the importance of including wind conditions in the studies of foraging ecology of seabirds.


Asunto(s)
Charadriiformes , Copépodos , Animales , Regiones Árticas , Zooplancton , Ecología , Agua
4.
Sci Total Environ ; 780: 146491, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34030341

RESUMEN

Climate-induced glacial retreat in the Arctic results in an increased supply of meltwater with suspended terrigenous material into the marine environment. Despite increasing research efforts, effects of glacial retreat on functioning of plankton are not well documented and understood. Thus, we studied a hydro-optical seawater regime along with particle/plankton concentrations and composition structure in a high Arctic fjord (Isfjorden, West Spitsbergen) during mid-summer in 2019. This comprehensive study of the upper 50 m water layer presented a sharp distinction between 'muddy' waters influenced by glacial and river runoff and 'clear' open fjordic waters in the form of a notable difference in chlorophyll a concentrations, extent of euphotic zone depth, turbidity, inorganic/organic particle concentrations, and water colour. In this study, we present that the effects of glacial retreat on Arctic pelagial depend not only on different types of glaciers (marine- and land-terminating), but presumably, also on fjord topography and exposure to oceanic water inflow. The contrasting glacial, hydrological, and topographical conditions had different effects on the share of zooplankton and marine snow. Despite adaptation of the planktonic communities in the Arctic to high sediment loads and resultant light limitations, our study shows that continuing retreat of tidewater glaciers will have negative effect on planktonic communities especially in enclosed shallow fjord branches. Moreover, seawater darkening due to high turbidity could negatively affect tactile predators, such as gelatinous zooplankton. Additional division of plankton into functional groups typically used in the biogeochemical models demonstrated that diatoms, flagellates and mesozooplankton are influenced by suspended matter, whereas microzooplankton are highly adaptive to increased sediment loads. Since we investigated the largest Svalbard fjord system and incorporated multiple components of the pelagic realm, the current study delivers important recommendations for including marine snow and gelatinous zooplankton in ecosystem models applied in polar regions.


Asunto(s)
Cubierta de Hielo , Plancton , Animales , Regiones Árticas , Clorofila A , Ecosistema , Océanos y Mares , Svalbard
5.
Appl Opt ; 49(6): 1041-53, 2010 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-20174174

RESUMEN

We develop a computationally fast radiative transfer model for simulating the fluctuations of the underwater downwelling irradiance E(d) at near-surface depths, which occur due to focusing of sunlight by wind-driven surface waves. The model is based on the hybrid matrix operator-Monte Carlo method, which was specifically designed for simulating radiative transfer in a coupled atmosphere-surface-ocean system involving a dynamic ocean surface. In the current version of the model, we use a simplified description of surface waves, which accounts for surface slope statistics, but not surface wave elevation, as a direct source of underwater light fluctuations. We compare the model results with measurements made in the Santa Barbara Channel. The model-simulated and measured time series of E(d)(t) show remarkable similarity. Major features of the probability distribution of instantaneous irradiance, the frequency content of irradiance fluctuations, and the statistical properties of light flashes produced by wave focusing are also generally consistent between the model simulations and measurements for a few near-surface depths and light wavelengths examined. Despite the simplification in the representation of surface waves, this model provides a reasonable first-order approximation to modeling the wave focusing effects at near-surface depths, which require high temporal and spatial resolution (of the order of 1 ms and 1 mm, respectively) to be adequately resolved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA