Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PNAS Nexus ; 3(10): pgae386, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39359401

RESUMEN

Rising surface temperatures are projected to cause more frequent and intense droughts in the world's drylands. This can lead to land degradation, mobilization of soil particles, and an increase in dust aerosol emissions from arid and semi-arid regions. Dust aerosols are a key source of bio-essential nutrients, can be transported in the atmosphere over large distances, and ultimately deposited onto the ocean's surface, alleviating nutrient limitation and increasing oceanic primary productivity. Currently, the linkages between desertification, dust emissions and ocean fertilization remain poorly understood. Here, we show that dust emitted from Southern Africa was transported and deposited into the nutrient-limited surface waters southeast of Madagascar, which stimulated the strongest phytoplankton bloom of the last two decades during a period of the year when blooms are not expected. The conditions required for triggering blooms of this magnitude are anomalous, but current trends in air temperatures, aridity, and dust emissions in Southern Africa suggest that such events could become more probable in the future. Together with the recent findings on ocean fertilization by drought-induced megafires in Australia, our results point toward a potential link between global warming, drought, aerosol emissions, and ocean blooms.

2.
Ann Rev Mar Sci ; 13: 313-342, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32976730

RESUMEN

Ocean temperature variability is a fundamental component of the Earth's climate system, and extremes in this variability affect the health of marine ecosystems around the world. The study of marine heatwaves has emerged as a rapidly growing field of research, given notable extreme warm-water events that have occurred against a background trend of global ocean warming. This review summarizes the latest physical and statistical understanding of marine heatwaves based on how they are identified, defined, characterized, and monitored through remotely sensed and in situ data sets. We describe the physical mechanisms that cause marine heatwaves, along with their global distribution, variability, and trends. Finally, we discuss current issues in this developing research area, including considerations related to thechoice of climatological baseline periods in defining extremes and how to communicate findings in the context of societal needs.


Asunto(s)
Cambio Climático , Monitoreo del Ambiente/métodos , Calor , Modelos Teóricos , Agua de Mar/química , Conjuntos de Datos como Asunto , Ecosistema , Monitoreo del Ambiente/estadística & datos numéricos , Calentamiento Global , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA