Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanoscale ; 8(1): 348-57, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26610811

RESUMEN

Nanostructured thin films are important in the fields of energy conversion and storage. In particular, multi-layered nanostructured films play an important role as a part of the energy system for energy saving applications in buildings. Inkjet printing is a low-cost and attractive technology for patterning and deposition of multi-layered nanostructured materials on various substrates. However, it requires the development of a suitable ink formulation with optimum viscosity, surface tension and evaporation rate for various materials. In this study, a versatile ink formulation was successfully developed to prepare NiO and WO3 nanostructured films with strong adhesion to ITO coated glass using inkjet printing for energy saving electrochromic applications. We achieved a high performance electrochromic electrode, producing porous and continuous electrochromic films without aggregation. The NiO film with 9 printed layers exhibits an optical modulation of 64.2% at 550 nm and a coloration efficiency (CE) of 136.7 cm(2) C(-1). An inkjet-printed complementary all solid-state device was assembled, delivering a larger optical modulation of 75.4% at 633 nm and a higher CE of 131.9 cm(2) C(-1) among all solid-state devices. The enhanced contrast is due to the printed NiO film that not only performs as an ion storage layer, but also as a complementary electrochromic layer.

2.
Chem Sci ; 7(2): 1373-1382, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29910894

RESUMEN

Porous WO3 films with ultra-high transmittance modulation were successfully fabricated on different substrates by a novel, facile and economical pulsed electrochemical deposited method with 1.1 s interval time between each pulse. The near ideal optical modulation (97.7% at 633 nm), fast switching speed (6 and 2.7 s), high coloration efficiency (118.3 cm2 C-1), and excellent cycling stability are achieved by the porous WO3 on ITO-coated glass. The outstanding electrochromic performances of the porous WO3 film were mainly attributed to the porous structure, which facilitates the charge-transfer, promotes the electrolyte infiltration and alleviates the expansion of the WO3 during H+ insertion compared to that of the compact structure. In addition, the relationships between the structural and electrochemical activity of the electrochromic WO3 films were further explored by the scanning electrochemical microscopy. These results testify that the porous structure can promote the infiltration of electrolyte and reduce the diffusion path, which consequently enhance the electrochemical activity.

3.
Nanoscale ; 6(9): 4572-6, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24676234

RESUMEN

Printed electrochromic flexible films were obtained by combining transparent silver grid electrodes formed by self-assembly and inkjet printed WO3 nanoparticles. Concentrated dispersions of WO3 nanoparticles were inkjet printed on transparent plastic silver grid electrodes with a high transparency of 83% in the spectral range of 400-800 nm, and a low sheet resistance in the range of 1-5 Ω sq(-1). These electrodes were used for electrochromic applications for the first time. The resultant patterned nanostructured electrochromic films maintained their coloring and bleaching performance after bending of the flexible films.

4.
Sci Rep ; 3: 1026, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23293741

RESUMEN

We have revealed practical charge injection at metal and organic semiconductor interface in organic field effect transistor configurations. We have developed a facile interface structure that consisted of double-layer electrodes in order to investigate the efficiency through contact metal dependence. The metal interlayer with few nanometers thickness between electrode and organic semiconductor drastically reduces the contact resistance at the interface. The improvement has clearly obtained when the interlayer is a metal with lower standard electrode potential of contact metals than large work function of the contact metals. The electrode potential also implies that the most dominant effect on the mechanism at the contact interface is induced by charge transfer. This mechanism represents a step forward towards understanding the fundamental physics of intrinsic charge injection in all organic devices.

5.
Nanoscale ; 5(20): 9572-6, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23986323

RESUMEN

We present the temperature-dependent carrier mobility of atomically thin MoS2 field-effect transistors on crystalline hexagonal boron nitride (h-BN) and SiO2 substrates. Our results reveal distinct weak temperature dependence of the MoS2 devices on h-BN substrates. The room temperature mobility enhancement and reduced interface trap density of the single and bilayer MoS2 devices on h-BN substrates further indicate that reducing substrate traps is crucial for enhancing the mobility in atomically thin MoS2 devices.

6.
Sci Rep ; 2: 393, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22563523

RESUMEN

A facile solution process for the fabrication of organic single crystal semiconductor devices which meets the demand for low-cost and large-area fabrication of high performance electronic devices is demonstrated. In this paper, we develop a bottom-up method which enables direct formation of organic semiconductor single crystals at selected locations with desired orientations. Here oriented growth of one-dimensional organic crystals is achieved by using self-assembly of organic molecules as the driving force to align these crystals in patterned regions. Based upon the self-organized organic single crystals, we fabricate organic field effect transistor arrays which exhibit an average field-effect mobility of 1.1 cm(2)V(-1)s(-1). This method can be carried out under ambient atmosphere at room temperature, thus particularly promising for production of future plastic electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA