Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Angew Chem Int Ed Engl ; 62(49): e202310191, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37849070

RESUMEN

The development of oxidation catalysts that are resistant to sulfur poisoning is crucial for extending the lifespan of catalysts in real-working conditions. Herein, we describe the design and synthesis of oxide-metal interaction (OMI) catalyst under oxidative atmospheres. By using organic coated TiO2 , an oxide/metal inverse catalyst with non-classical oxygen-saturated TiO2 overlayers were obtained at relatively low temperature. These catalysts were found to incorporate ultra-small Pd metal and support particles with exceptional reactivity and stability for CO oxidation (under 21 vol % O2 and 10 vol % H2 O). In particular, the core (Pd)-shell (TiO2 ) structured OMI catalyst exhibited excellent resistance to SO2 poisoning, yielding robust CO oxidation performance at 120 °C for 240 h (at 100 ppm SO2 and 10 vol % H2 O). The stability of this new OMI catalyst was explained through density functional theory (DFT) calculations that interfacial oxygen atoms at Pd-O-Ti sites (of oxygen-saturated overlayers) serve as non-metal active sites for low-temperature CO oxidation, and change the SO2 adsorption from metal(d)-to-SO2 (π*) back-bonding to much weaker σ(Ti-S) bonding.

2.
Inorg Chem ; 59(14): 9783-9797, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32633981

RESUMEN

While commercial Li-ion batteries offer the highest energy densities of current rechargeable battery technologies, their energy storage limit has almost been achieved. Therefore, there is considerable interest in Mg batteries, which could offer increased energy densities in comparison to Li-ion batteries if a high-voltage electrode material, such as a transition-metal oxide, can be developed. However, there are currently very few oxide materials which have demonstrated reversible and efficient Mg2+ insertion and extraction at high voltages; this is thought to be due to poor Mg2+ diffusion kinetics within the oxide structural framework. Herein, the authors provide conclusive evidence of electrochemical insertion of Mg2+ into the tetragonal tungsten bronze V4Nb18O55, with a maximum reversible electrochemical capacity of 75 mA h g-1, which corresponds to a magnesiated composition of Mg4V4Nb18O55. Experimental electrochemical magnesiation/demagnesiation revealed a large voltage hysteresis with charge/discharge (1.12 V vs Mg/Mg2+); when magnesiation is limited to a composition of Mg2V4Nb18O55, this hysteresis can be reduced to only 0.5 V. Hybrid-exchange density functional theory (DFT) calculations suggest that a limited number of Mg sites are accessible via low-energy diffusion pathways, but that larger kinetic barriers need to be overcome to access the entire structure. The reversible Mg2+ intercalation involved concurrent V and Nb redox activity and changes in crystal structure, as confirmed by an array of complementary methods, including powder X-ray diffraction, X-ray absorption spectroscopy, and energy-dispersive X-ray spectroscopy. Consequently, it can be concluded that the tetragonal tungsten bronzes show promise as intercalation electrode materials for Mg batteries.

3.
Chem Rev ; 117(17): 11125-11238, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28771006

RESUMEN

Nanomaterials are at the leading edge of the emerging field of nanotechnology. Their unique and tunable size-dependent properties (in the range 1-100 nm) make these materials indispensable in many modern technological applications. In this Review, we summarize the state-of-art in the manufacture and applications of inorganic nanoparticles made using continuous hydrothermal flow synthesis (CHFS) processes. First, we introduce ideal requirements of any flow process for nanoceramics production, outline different approaches to CHFS, and introduce the pertinent properties of supercritical water and issues around mixing in flow, to generate nanoparticles. This Review then gives comprehensive coverage of the current application space for CHFS-made nanomaterials including optical, healthcare, electronics (including sensors, information, and communication technologies), catalysis, devices (including energy harvesting/conversion/fuels), and energy storage applications. Thereafter, topics of precursor chemistry and products, as well as materials or structures, are discussed (surface-functionalized hybrids, nanocomposites, nanograined coatings and monoliths, and metal-organic frameworks). Later, this Review focuses on some of the key apparatus innovations in the field, such as in situ flow/rapid heating systems (to investigate kinetics and mechanisms), approaches to high throughput flow syntheses (for nanomaterials discovery), as well as recent developments in scale-up of hydrothermal flow processes. Finally, this Review covers environmental considerations, future directions and capabilities, along with the conclusions and outlook.

4.
Faraday Discuss ; 197: 517-532, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28177339

RESUMEN

Copper oxide modified electrodes were investigated as a function of applied electrode potential using in situ infrared spectroscopy and ex situ Raman and X-ray photoelectron spectroscopy. In deoxygenated KHCO3 electrolyte bicarbonate and carbonate species were found to adsorb to the electrode during reduction and the CuO was reduced to Cu(i) or Cu(0) species. Carbonate was incorporated into the structure and the CuO starting material was not regenerated on cycling to positive potentials. In contrast, in CO2 saturated KHCO3 solution, surface adsorption of bicarbonate and carbonate was not observed and adsorption of a carbonato-species was observed with in situ infrared spectroscopy. This species is believed to be activated, bent CO2. On cycling to negative potentials, larger reduction currents were observed in the presence of CO2; however, less of the charge could be attributed to the reduction of CuO. In the presence of CO2 CuO underwent reduction to Cu2O and potentially Cu, with no incorporation of carbonate. Under these conditions the CuO starting material could be regenerated by cycling to positive potentials.

5.
Nanotechnology ; 28(19): 195403, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28352001

RESUMEN

Nano-sized Mo-doped titania (Mo0.1Ti0.9O2) and Nb-doped titania (Nb0.25Ti0.75O2) were directly synthesized via a continuous hydrothermal flow synthesis process. Materials characterization was conducted using physical techniques such as transmission electron microscopy, powder x-ray diffraction, x-ray photoelectron spectroscopy, Brunauer-Emmett-Teller specific surface area measurements and energy dispersive x-ray spectroscopy. Hybrid Li-ion supercapacitors were made with either a Mo-doped or Nb-doped TiO2 negative electrode material and an activated carbon (AC) positive electrode. Cells were evaluated using electrochemical testing (cyclic voltammetry, constant charge discharge cycling). The hybrid Li-ion capacitors showed good energy densities at moderate power densities. When cycled in the potential window 0.5-3.0 V, the Mo0.1Ti0.9O2/AC hybrid supercapacitor showed the highest energy densities of 51 Wh kg-1 at a power of 180 W kg-1 with energy densities rapidly declining with increasing applied specific current. In comparison, the Nb0.25Ti0.75O2/AC hybrid supercapacitor maintained its energy density of 45 Wh kg-1 at 180 W kg-1 better, showing 36 Wh g-1 at 3200 W kg-1, which is a very promising mix of high energy and power densities. Reducing the voltage window to the range 1.0-3.0 V led to an increase in power density, with the Mo0.1Ti0.9O2/AC hybrid supercapacitor giving energy densities of 12 Wh kg-1 and 2.5 Wh kg-1 at power densities of 6700 W kg-1 and 14 000 W kg-1, respectively.

6.
J Microsc ; 263(3): 280-92, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26999804

RESUMEN

Lithium-ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium-ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3-D imaging techniques, quantitative assessment of 3-D microstructures from 2-D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two-dimensional (2-D) data sets. In this study, stereological prediction and three-dimensional (3-D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium-ion battery electrodes were imaged using synchrotron-based X-ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2-D image sections generated from tomographic imaging, whereas direct 3-D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2-D image sections is bound to be associated with ambiguity and that volume-based 3-D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially-dependent parameters, such as tortuosity and pore-phase connectivity.

7.
Photochem Photobiol Sci ; 14(6): 1190-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25976167

RESUMEN

In this work, the photocatalytic disinfection of Escherichia coli (E. coli) using dual layer ceramic wafers, prepared by a simple and low-cost technique, was investigated. Heterojunction wafers were prepared by pressing TiO2 and WO3 powders together into 2 layers within a single, self-supported monolith. Data modelling showed that the heterojunction wafers were able to sustain the formation of charged species (after an initial "charging" period). In comparison, a wafer made from pure TiO2 showed a less desirable bacterial inactivation profile in that the rate decreased with time (after being faster initially). The more favourable kinetics of the dual layer system was due to superior electron-hole vectorial charge separation and an accumulation of charges beyond the initial illumination period. The results demonstrate the potential for developing simplified photocatalytic devices for rapid water disinfection.


Asunto(s)
Cerámica/química , Desinfección/métodos , Escherichia coli/efectos de la radiación , Luz , Escherichia coli/fisiología , Propiedades de Superficie , Titanio/química , Tungsteno/química , Microbiología del Agua
8.
Heliyon ; 10(7): e29150, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601679

RESUMEN

A novel eco-friendly high throughput continuous hydrothermal flow system was used to synthesise phase pure ZnO and doped ZnO in order to explore their properties for tissue engineering applications. Cerium, zirconium, and copper were introduced as dopants during flow synthesis of ZnO nanoparticles, Zirconium doped ZnO were successfully synthesised, however secondary phases of CeO and CuO were detected in X-ray diffraction (XRD). The nanoparticles were characterised using X-ray diffraction, Brunauer-Emmett-Teller (BET), Dynamic Light scattering Measurements, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and RAMAN spectroscopy was used to evaluate physical, chemical, and structural properties. The change in BET surface area was also significant, the surface area increased from 11.35 (ZnO_2) to 26.18 (ZrZnO_5). However. In case of CeZnO_5 and CuZnO_5 was not significant 13.68 (CeZnO_5) and 12.16 (CuZnO_5) respectively. Cell metabolic activity analysis using osteoblast-like cells (MG63) and human embryonic derived mesenchymal stem cells (hES-MP) demonstrated that doped ZnO nanoparticles supported higher cell metabolic activity compared to cells grown in standard media with no nanoparticles added, or pure zinc oxide nanoparticles. The ZrZnO_5 demonstrated the highest cell metabolic activity and non-cytotoxicity over the duration of 28 days as compared to un doped or Ce or Cu incorporated nanoparticles. The current data suggests that Zirconium doping positively enhances the properties of ZnO nanoparticles by increasing the surface area and cell proliferation. Therefore, are potential additives within biomaterials or for tissue engineering applications.

9.
Phys Chem Chem Phys ; 15(39): 16788-94, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23999866

RESUMEN

Boron-doped titanium dioxide (B-TiO2) films were deposited by atmospheric pressure chemical vapour deposition of titanium(iv) chloride, ethyl acetate and tri-isopropyl borate on steel and fluorine-doped-tin oxide substrates at 500, 550 and 600 °C, respectively. The films were characterised using powder X-ray diffraction (PXRD), which showed anatase phase TiO2 at lower deposition temperatures (500 and 550 °C) and rutile at higher deposition temperatures (600 °C). X-ray photoelectron spectroscopy (XPS) showed a dopant level of 0.9 at% B in an O-substitutional position. The ability of the films to reduce water was tested in a sacrificial system using 365 nm UV light with an irradiance of 2 mW cm(-2). Hydrogen production rates of B-TiO2 at 24 µL cm(-2) h(-1) far exceeded undoped TiO2 at 2.6 µL cm(-2) h(-1). The B-TiO2 samples were also shown to be active for water oxidation in a sacrificial solution. Photocurrent density tests also revealed that B-doped samples performed better, with an earlier onset of photocurrent.

10.
Phys Chem Chem Phys ; 15(35): 14729-35, 2013 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-23903769

RESUMEN

TiO2 compact layers (CLs) prepared by electrophoretic deposition (EPD) from an aqueous nanoparticle suspension were used in dye-sensitized solar cells (DSSCs) to prevent charge recombination at the interface between the transparent fluorine-doped tin oxide (FTO) substrate and the electrolyte. The TiO2 nanopowder (ca. 4.5 nm diameter) suspension used in the EPD process was prepared via a continuous hydrothermal flow synthesis pilot plant (at a production rate of ca. 0.38 kg h(-1)). The optimal thickness of the TiO2 CL for DSSCs is about 115 nm. Compared to the DSSCs without a CL, the optimal cell has shown improved short-circuit current density (JSC) and solar energy conversion efficiency by 13.1% and 15.0%, respectively. The mechanism for improved performance has been studied by the measurements of dark current and electrochemical impedance spectra. The interfacial charge transfer resistance at the FTO/electrolyte interface is increased after fabricating a CL in the cell, indicating inhibited electron recombination at the interface.

11.
Langmuir ; 28(3): 1879-85, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22185648

RESUMEN

A rapid, clean, and continuous hydrothermal route to the synthesis of ca. 14 nm indium oxide (In(2)O(3)) nanoparticles using a superheated water flow at 400 °C and 24.1 MPa as a crystallizing medium and reagent is described. Powder X-ray diffraction (XRD) of the particles revealed that they were highly crystalline despite their very short time under hydrothermal flow conditions. Gas sensing substrates were prepared from an In(2)O(3) suspension via drop-coating, and their gas sensing properties were tested for response to butane, ethanol, CO, ammonia, and NO(2) gases. The sensors showed excellent selectivity toward ethanol, giving a response of 18-20 ppm.

12.
Sci Rep ; 12(1): 10180, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715503

RESUMEN

When polymer composites containing magnetic nanoparticles (MNPs) are exposed to an alternating magnetic field, heat is generated to melt the surrounding polymer locally, partially filling voids across any cracks or deformities. Such materials are of interest for structural applications; however, structural polymers with high melting temperatures pose the challenge of generating high localised temperatures enabling self-healing. A method to prepare a multiferroic-Polyamide 6 (PA6) nanocomposite with tuneable magnetocaloric properties is reported. Tunability arises from varying the MNP material (and any coating, its dispersion, and agglomerate sizes in the nanocomposite). The superparamagnetic MNPs (SMNPs) and iron oxide MNPs with and without surface functionalization were dispersed into PA6 through in situ polymerization, and their magnetic properties were compared. Furthermore, computer simulations were used to quantify the dispersion state of MNPs and assess the influence of the interaction radius on the magnetic response of the self-healable magnetic nanoparticle polymer (SHMNP) composite. It was shown that maintaining the low interaction radius through the dispersion of the low coercivity MNPs could allow tuning of the bulk magnetocaloric properties of the resulting mesostructures. An in-situ polymerization method improved the dispersion and reduced the maximum interaction radius value from ca. 806 to 371 nm and increased the magnetic response for the silica-coated SMNP composite. This sample displayed ca. three orders of magnitude enhancement for magnetic saturation compared to the unfunctionalized Fe3O4 MNP composite.

13.
Nanoscale ; 13(22): 10081-10091, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34052841

RESUMEN

α-V2O5 has been extensively explored as a Mg2+ intercalation host with potential as a battery cathode, offering high theoretical capacities and potentials vs. Mg2+/Mg. However, large voltage hysteresis is observed with Mg insertion and extraction, introducing significant and unacceptable round-trip energy losses with cycling. Conventional interpretations suggest that bulk ion transport of Mg2+ within the cathode particles is the major source of this hysteresis. Herein, we demonstrate that nanosizing α-V2O5 gives a measurable reduction to voltage hysteresis on the first cycle that substantially raises energy efficiency, indicating that mechanical formatting of the α-V2O5 particles contributes to hysteresis. However, no measurable improvement in hysteresis is found in the nanosized α-V2O5 in latter cycles despite the much shorter diffusion lengths, suggesting that other factors aside from Mg transport, such as Mg transfer between the electrolyte and electrode, contribute to this hysteresis. This observation is in sharp contrast to the conventional interpretation of Mg electrochemistry. Therefore, this study uncovers critical fundamental underpinning limiting factors in Mg battery electrochemistry, and constitutes a pivotal step towards a high-voltage, high-capacity electrode material suitable for Mg batteries with high energy density.

14.
Small Methods ; 5(9): e2100512, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34928070

RESUMEN

Synchrotron high-energy X-ray diffraction computed tomography has been employed to investigate, for the first time, commercial cylindrical Li-ion batteries electrochemically cycled over the two cycling rates of C/2 and C/20. This technique yields maps of the crystalline components and chemical species as a cross-section of the cell with high spatiotemporal resolution (550 × 550 images with 20 × 20 × 3 µm3 voxel size in ca. 1 h). The recently developed Direct Least-Squares Reconstruction algorithm is used to overcome the well-known parallax problem and led to accurate lattice parameter maps for the device cathode. Chemical heterogeneities are revealed at both electrodes and are attributed to uneven Li and current distributions in the cells. It is shown that this technique has the potential to become an invaluable diagnostic tool for real-world commercial batteries and for their characterization under operating conditions, leading to unique insights into "real" battery degradation mechanisms as they occur.

15.
Chemistry ; 16(34): 10546-52, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20645333

RESUMEN

Twenty eight films of titanium dioxide of varying thickness were synthesised by using atmospheric pressure chemical vapour deposition (CVD) of titanium(IV) chloride and ethyl acetate onto glass and titanium substrates. Fixed reaction conditions at a substrate temperature of 660 °C were used for all depositions, with varying deposition times of 5-60 seconds used to control the thickness of the samples. A sacrificial electron acceptor system composed of alkaline sodium persulfate was used to determine the rate at which these films could photo-oxidise water in the presence of 365 nm light. The results of this work showed that the optimum thickness for CVD films on titanium substrates for the purposes of water oxidation was ≈200 nm, and that a platinum coating on the reverse of such samples leads to a five-fold increase in the observed rate of water oxidation.

16.
J Comb Chem ; 12(3): 383-92, 2010 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-20420368

RESUMEN

We report on the commissioning experimental run of the rapid automated materials synthesis instrument (RAMSI), a combinatorial robot designed to manufacture, clean, and print libraries of nanocrystal precursor solid compositions. The first stage of RAMSI, parallel synthesis, uses a fully automated high throughput continuous hydrothermal (HiTCH) flow reactor for automatic metal salt precursor mixing, hydrothermal flow reaction, and sample slurry collection. The second stage of RAMSI provides integrated automated cleanup, and the third section is a ceramic printing function. Nanocrystal precursor solid ceramics were synthesized from precursor solutions and collected into 50 mL centrifuge tubes where they were cleaned by multiple centrifugation and redispersion cycles (monitored by intelligent scanning turbidimetry) and printed with an automated pipette. Eight unique compositions of a model phosphor library comprising pure nano-Y(OH)(3) and Eu(3+) doped-yttrium hydroxide, Y(OH)(3):Eu(3+) nanocrystal precursor solid were synthesized (with 2 centrifuge tubes' worth collected per composition), processed, and printed in duplicate as 75, 100, and 125 microL dots in a 21.6 ks (6 h) experiment (note: the actual time for synthesis of each sample tube was only 12 min so up to 60 compositions could easily be synthesized in 12 h if one centrifuge tube per composition was collected instead). The Y(OH)(3):Eu(3+) samples were manually placed in a furnace and heat-treated in air for 14.4 ks (4 h) in the temperature range 200-1200 at 100 degrees C intervals (giving a total of 84 samples plus one as-prepared pure Y(OH)(3) sample). The as-prepared and heat-treated ceramic samples were affixed to 4 mm wide hemispherical wells in a custom-made aluminum well-plate and analyzed using a fluorescence spectrometer. When the library was illuminated with a 254 nm light source (and digitally imaged and analyzed), the 3 mol % Eu(3+) sample heat-treated at 1200 degrees C gave the most intense fluorescence (major red peak at 612 nm); however, an identical nanocrystal precursor heat-treated at only 500 degrees C (identified as Y(2)O(3):Eu(3+) after heat treatment) was the brightest phosphor under illumination of the samples heat-treated at or below 1000 degrees C.


Asunto(s)
Cerámica/síntesis química , Frío , Técnicas Químicas Combinatorias/métodos , Calor , Nanopartículas/química , Fósforo/química , Automatización , Cerámica/química , Europio/química , Hidrólisis , Luminiscencia , Microscopía Electrónica , Óxidos/química , Tamaño de la Partícula , Espectrometría de Fluorescencia , Agua/química , Itrio/química
17.
ACS Comb Sci ; 22(12): 750-756, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33151687

RESUMEN

A library of 66 perovskite BaxSryCazTiO3 (x + y + z = 1) samples (ca. three grams per sample) was made in ca. 14 h using a high-throughput continuous hydrothermal flow synthesis system. The as-synthesized samples were collected from the outlet of the process and then cleaned and freeze-dried before being evaluated individually as oxygen reduction catalysts using a rotating disk electrode testing technique. To establish any correlations between physical and electrochemical characterization data, the as-synthesized samples were investigated using analytical methods including BET surface area, powder X-ray diffraction (PXRD) and in selected cases, transmission electron microscopy (TEM). The aforementioned approach was validated as being able to quickly identify oxygen reduction catalysts from new libraries of electrocatalysts.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Metales Alcalinotérreos/química , Oxígeno/química , Titanio/química , Catálisis , Oxidación-Reducción
18.
RSC Adv ; 10(68): 41871-41882, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-35516532

RESUMEN

Developing large-scale and high-performance OER (oxygen evolution reaction) and ORR (oxygen reduction reaction) catalysts have been a challenge for commercializing secondary zinc-air batteries. In this work, transition metal-doped cobalt-nickel sulfide spinels are directly produced via a continuous hydrothermal flow synthesis (CHFS) approach. The nanosized cobalt-nickel sulfides are doped with Ag, Fe, Mn, Cr, V, and Ti and evaluated as bifunctional OER and ORR catalyst for Zn-air battery application. Among the doped spinel catalysts, Mn-doped cobalt-nickel sulfides (Ni1.29Co1.49Mn0.22S4) exhibit the most promising OER and ORR performance, showing an ORR onset potential of 0.9 V vs. RHE and an OER overpotential of 348 mV measured at 10 mA cm-2, which is attributed to their high surface area, electronic structure of the dopant species, and the synergistic coupling of the dopant species with the active host cations. The dopant ions primarily alter the host cation composition, with the Mn(iii) cation linked to the introduction of active sites by its favourable electronic structure. A power density of 75 mW cm-2 is achieved at a current density of 140 mA cm-2 for the zinc-air battery using the manganese-doped catalyst, a 12% improvement over the undoped cobalt-nickel sulfide and superior to that of the battery with a commercial RuO2 catalyst.

19.
Chem Sci ; 11(19): 4980-4990, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-34122954

RESUMEN

Thermal control in low-emission windows is achieved by the application of glazings, which are simultaneously optically transparent in the visible and reflective in the near-infrared (IR). This phenomenon is characteristic of coatings with wide optical band gaps that have high enough charge carrier concentrations for the material to interact with electromagnetic radiation in the IR region. While conventional low-E coatings are composed of sandwiched structures of oxides and thin Ag films or of fluorinated SnO2 coatings, ZnO-based glazing offers an environmentally stable and economical alternative with competitive optoelectronic properties. In this work, gallium-doped zinc oxide (GZO) coatings with properties for low-E coatings that exceed industrial standards (T visible > 82%; R 2500 nm > 90%; λ (plasma) = 1290 nm; ρ = 4.7 × 10-4 Ω cm; R sh = 9.4 Ω·â–¡-1) are deposited through a sustainable and environmentally friendly halogen-free deposition route from [Ga(acac)3] and a pre-organized zinc oxide precursor [EtZnOiPr]4 (1) via single-pot aerosol-assisted chemical vapor deposition. GZO films are highly (002)-textured, smooth and compact without need of epitaxial growth. The method herein describes the synthesis of coatings with opto-electronic properties commonly achievable only through high-vacuum methods, and provides an alternative to the use of pyrophoric ZnEt2 and halogenated SnO2 coatings currently used in low-emission glazing and photovoltaic technology.

20.
Nanoscale ; 12(43): 22150-22160, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33135020

RESUMEN

V2O5 is of interest as a Mg intercalation electrode material for Mg batteries, both in its thermodynamically stable layered polymorph (α-V2O5) and in its metastable tunnel structure (ζ-V2O5). However, such oxide cathodes typically display poor Mg insertion/removal kinetics, with large voltage hysteresis. Herein, we report the synthesis and evaluation of nanosized (ca. 100 nm) ζ-V2O5 in Mg-ion cells, which displays significantly enhanced electrochemical kinetics compared to microsized ζ-V2O5. This effect results in a significant boost in stable discharge capacity (130 mA h g-1) compared to bulk ζ-V2O5 (70 mA h g-1), with reduced voltage hysteresis (1.0 V compared to 1.4 V). This study reveals significant advancements in the use of ζ-V2O5 for Mg-based energy storage and yields a better understanding of the kinetic limiting factors for reversible magnesiation reactions into such phases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA