Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J World Fed Orthod ; 13(5): 211-220, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38762443

RESUMEN

BACKGROUND: Non-invasive restoration of tooth enamel is a topic of high relevance in dental material science. Multiple approaches have been proposed to reach optimum reconstruction results. The current study was performed to evaluate the cross-sectional microhardness besides mineral quality and content in artificially induced carious enamel after treatment with hydroxyapatite-chitosan (HAp-CS) nanocomposite gel. METHODS: Artificially carious lesions were induced by immersion of teeth in acidic carboxymethyl cellulose gel (pH 4.95-5) for 24- and 72-hours periods. Two different compositions of HAp-CS nanocomposite hydrogel were prepared with two different ratios 50/50 (%) and 70/30 (%), respectively. Additionally, sodium fluoride gel (1000 ppm concentration) was prepared and used as reference. Gels were applied to carious lesions twice/day for 3 min/each. After 45 days of application, surface morphology, energy dispersive x-ray spectroscopy, micro-Raman analysis in addition to cross-sectional microhardness were evaluated. Statistical analysis was performed using two-way ANOVA and Tukey's post hoc statistical tests. RESULTS: Surface morphological evaluation of treated surfaces showed obliteration of surface irregularities. Groups demineralized for 24 hours and treated with 70/30 (HAp-CS) showed highest significant cross-sectional-microhardness (P ≤ 0.05). Evaluated subsurface cross-sectional microhardness showed better mineral quality for groups demineralized for 24 hours and treated with HAp-CS nanocomposite gels. CONCLUSIONS: Nanocomposite gel with 70/30 (HAp-CS) could efficiently improve cross-sectional microhardness and both minerals composition and quality for lesions demineralized for 24 hours. More severely induced lesions, as demineralized for 72 hours, need more powerful agent compositions and/or prolonged application protocols for improvement.


Asunto(s)
Quitosano , Caries Dental , Durapatita , Hidrogeles , Nanocompuestos , Quitosano/química , Durapatita/química , Caries Dental/terapia , Esmalte Dental/efectos de los fármacos , Espectrometría por Rayos X , Humanos , Desmineralización Dental , Dureza , Fluoruro de Sodio , Carboximetilcelulosa de Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA