Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Blood ; 143(20): 2059-2072, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38437498

RESUMEN

ABSTRACT: BRG1 (SMARCA4) and BRM (SMARCA2) are the mutually exclusive core ATPases of the chromatin remodeling BAF (BRG1/BRM-associated factor) complexes. They enable transcription factors/cofactors to access enhancers/promoter and modulate gene expressions responsible for cell growth and differentiation of acute myeloid leukemia (AML) stem/progenitor cells. In AML with MLL1 rearrangement (MLL1r) or mutant NPM1 (mtNPM1), although menin inhibitor (MI) treatment induces clinical remissions, most patients either fail to respond or relapse, some harboring menin mutations. FHD-286 is an orally bioavailable, selective inhibitor of BRG1/BRM under clinical development in AML. Present studies show that FHD-286 induces differentiation and lethality in AML cells with MLL1r or mtNPM1, concomitantly causing perturbed chromatin accessibility and repression of c-Myc, PU.1, and CDK4/6. Cotreatment with FHD-286 and decitabine, BET inhibitor (BETi) or MI, or venetoclax synergistically induced in vitro lethality in AML cells with MLL1r or mtNPM1. In models of xenografts derived from patients with AML with MLL1r or mtNPM1, FHD-286 treatment reduced AML burden, improved survival, and attenuated AML-initiating potential of stem-progenitor cells. Compared with each drug, cotreatment with FHD-286 and BETi, MI, decitabine, or venetoclax significantly reduced AML burden and improved survival, without inducing significant toxicity. These findings highlight the FHD-286-based combinations as a promising therapy for AML with MLL1r or mtNPM1.


Asunto(s)
ADN Helicasas , Leucemia Mieloide Aguda , Células Madre Neoplásicas , Proteínas Nucleares , Nucleofosmina , Proteínas Proto-Oncogénicas , Factores de Transcripción , Humanos , Animales , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Ratones , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Proteínas que Contienen Bromodominio , Proteínas
2.
Haematologica ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38031807

RESUMEN

Complications occurring after lymphodepleting chemotherapy (LDC) may delay chimeric antigen receptor (CAR) T-cell infusion. The effect of these delays on clinical outcomes is unclear. We performed a retrospective analysis of 240 patients with relapsed/refractory large B-cell lymphoma treated with standard-of-care axicabtagene ciloleucel (axi-cel) and identified 40 patients (16.7%) who had delay in axi-cel infusion. Of these, 85% had delay due to infection. At time of LDC initiation, patients with delayed infusion had lower absolute neutrophil count (p=0.006), lower platelets (p=0.004), lower hemoglobin (p5 days (4.6 vs. 8.2 months; p=0.036), but not 1 day (5.7 vs. 8.2 months; p=0.238). Following propensity score matching, patients with delayed infusion continued to have shorter median PFS (3.5 vs. 6.0 months; p=0.015). Levels of proinflammatory cytokines on day of infusion were significantly higher in patients with delayed infusion. Together, these findings suggest that delays in CAR T-cell administration after initiation of LDC are associated with inferior outcomes. Further studies are needed to guide strategies to improve efficacy in such patients.

3.
Blood Cancer J ; 14(1): 25, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316746

RESUMEN

Germline, mono-allelic mutations in RUNX1 cause familial platelet disorder (RUNX1-FPD) that evolves into myeloid malignancy (FPD-MM): MDS or AML. FPD-MM commonly harbors co-mutations in the second RUNX1 allele and/or other epigenetic regulators. Here we utilized patient-derived (PD) FPD-MM cells and established the first FPD-MM AML cell line (GMR-AML1). GMR-AML1 cells exhibited active super-enhancers of MYB, MYC, BCL2 and CDK6, augmented expressions of c-Myc, c-Myb, EVI1 and PLK1 and surface markers of AML stem cells. In longitudinally studied bone marrow cells from a patient at FPD-MM vs RUNX1-FPD state, we confirmed increased chromatin accessibility and mRNA expressions of MYB, MECOM and BCL2 in FPD-MM cells. GMR-AML1 and PD FPD-MM cells were sensitive to homoharringtonine (HHT or omacetaxine) or mebendazole-induced lethality, associated with repression of c-Myc, EVI1, PLK1, CDK6 and MCL1. Co-treatment with MB and the PLK1 inhibitor volasertib exerted synergistic in vitro lethality in GMR-AML1 cells. In luciferase-expressing GMR-AML1 xenograft model, MB, omacetaxine or volasertib monotherapy, or co-treatment with MB and volasertib, significantly reduced AML burden and improved survival in the immune-depleted mice. These findings highlight the molecular features of FPD-MM progression and demonstrate HHT, MB and/or volasertib as effective agents against cellular models of FPD-MM.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas , Leucemia Mieloide Aguda , Humanos , Animales , Ratones , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Homoharringtonina , Plaquetas/patología , Trastornos de las Plaquetas Sanguíneas/complicaciones , Trastornos de las Plaquetas Sanguíneas/genética , Trastornos de las Plaquetas Sanguíneas/patología , Proteínas Proto-Oncogénicas c-bcl-2
4.
Leukemia ; 38(3): 545-556, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38086946

RESUMEN

AML with chromosomal alterations involving 3q26 overexpresses the transcription factor (TF) EVI1, associated with therapy refractoriness and inferior overall survival in AML. Consistent with a CRISPR screen highlighting BRD4 dependency, treatment with BET inhibitor (BETi) repressed EVI1, LEF1, c-Myc, c-Myb, CDK4/6, and MCL1, and induced apoptosis of AML cells with 3q26 lesions. Tegavivint (TV, BC-2059), known to disrupt the binding of nuclear ß-catenin and TCF7L2/LEF1 with TBL1, also inhibited co-localization of EVI1 with TBL1 and dose-dependently induced apoptosis in AML cell lines and patient-derived (PD) AML cells with 3q26.2 lesions. TV treatment repressed EVI1, attenuated enhancer activity at ERG, TCF7L2, GATA2 and MECOM loci, abolished interactions between MYC enhancers, repressing AML stemness while upregulating mRNA gene-sets of interferon/inflammatory response, TGF-ß signaling and apoptosis-regulation. Co-treatment with TV and BETi or venetoclax induced synergistic in vitro lethality and reduced AML burden, improving survival of NSG mice harboring xenografts of AML with 3q26.2 lesions.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Animales , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína del Locus del Complejo MDS1 y EV11/genética , Proteína del Locus del Complejo MDS1 y EV11/metabolismo , Proteínas Nucleares/genética , Antineoplásicos/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Epigénesis Genética , Proto-Oncogenes , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genética
5.
Multimed Tools Appl ; 82(9): 14219-14237, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36185320

RESUMEN

The classification of medical images is significant among researchers and physicians for the early identification and clinical treatment of many disorders. Though, traditional classifiers require more time and effort for feature extraction and reduction from images. To overcome this problem, there is a need for a new deep learning method known as Convolution Neural Network (CNN), which shows the high performance and self-learning capabilities. In this paper,to classify whether a chest X-ray (CXR) image shows pneumonia (Normal) or COVID-19 illness, a test-bed analysis has been carried out between pre-trained CNN models like Visual Geometry Group (VGG-16), VGG-19, Inception version 3 (INV3), Caps Net, DenseNet121, Residual Neural Network with 50 deep layers (ResNet50), Mobile-Net and proposed CNN classifier. It has been observed that, in terms of accuracy, the proposed CNN model appears to be potentially superior to others. Additionally, in order to increase the performance of the CNN classifier, a nature-inspired optimization method known as Hill-Climbing Algorithm based CNN (CNN-HCA) model has been proposed to enhance the CNN model's parameters. The proposed CNN-HCA model performance is tested using a simulation study and contrasted to existing hybridized classifiers like as Particle Swarm Optimization (CNN-PSO) and CNN-Jaya. The proposed CNN-HCA model is compared with peer reviewed works in the same domain. The CXR dataset, which is freely available on the Kaggle repository, was used for all experimental validations. In terms of Receiver Operating Characteristic Curve (ROC), Area Under the ROC Curve (AUC), sensitivity, specificity, F-score, and accuracy, the simulation findings show that the CNN-HCA is possibly superior than existing hybrid approaches. Each method employs a k-fold stratified cross-validation strategy to reduce over-fitting.

6.
Blood Cancer J ; 13(1): 53, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055414

RESUMEN

Monotherapy with Menin inhibitor (MI), e.g., SNDX-5613, induces clinical remissions in patients with relapsed/refractory AML harboring MLL1-r or mtNPM1, but most patients either fail to respond or eventually relapse. Utilizing single-cell RNA-Seq, ChiP-Seq, ATAC-Seq, RNA-Seq, RPPA, and mass cytometry (CyTOF) analyses, present pre-clinical studies elucidate gene-expression correlates of MI efficacy in AML cells harboring MLL1-r or mtNPM1. Notably, MI-mediated genome-wide, concordant, log2 fold-perturbations in ATAC-Seq and RNA-Seq peaks were observed at the loci of MLL-FP target genes, with upregulation of mRNAs associated with AML differentiation. MI treatment also reduced the number of AML cells expressing the stem/progenitor cell signature. A protein domain-focused CRISPR-Cas9 screen in MLL1-r AML cells identified targetable co-dependencies with MI treatment, including BRD4, EP300, MOZ and KDM1A. Consistent with this, in vitro co-treatment with MI and BET, MOZ, LSD1 or CBP/p300 inhibitor induced synergistic loss of viability of AML cells with MLL1-r or mtNPM1. Co-treatment with MI and BET or CBP/p300 inhibitor also exerted significantly superior in vivo efficacy in xenograft models of AML with MLL1-r. These findings highlight novel, MI-based combinations that could prevent escape of AML stem/progenitor cells following MI monotherapy, which is responsible for therapy-refractory AML relapse.


Asunto(s)
Leucemia Mieloide Aguda , Proteína de la Leucemia Mieloide-Linfoide , Humanos , Proteínas de Ciclo Celular/genética , Epigénesis Genética , Histona Demetilasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Recurrencia Local de Neoplasia/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/genética
7.
Leukemia ; 37(6): 1336-1348, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36977823

RESUMEN

In AML with NPM1 mutation causing cytoplasmic dislocation of NPM1, treatments with Menin inhibitor (MI) and standard AML chemotherapy yield complete remissions. However, the causal and mechanistic linkage of mtNPM1 to the efficacy of these agents has not been definitively established. Utilizing CRISPR-Cas9 editing to knockout (KO) or knock-in a copy of mtNPM1 in AML cells, present studies demonstrate that KO of mtNPM1 from AML cells abrogates sensitivity to MI, selinexor (exportin-1 inhibitor), and cytarabine. Conversely, the knock-in of a copy of mtNPM1 markedly sensitized AML cells to treatment with MI or cytarabine. Following AML therapy, most elderly patients with AML with mtNPM1 and co-mutations in FLT3 suffer AML relapse with poor outcomes, creating a need for novel effective therapies. Utilizing the RNA-Seq signature of CRISPR-edited AML cells with mtNPM1 KO, we interrogated the LINCS1000-CMap data set and found several pan-HDAC inhibitors and a WEE1 tyrosine kinase inhibitor among the top expression mimickers (EMs). Additionally, treatment with adavosertib (WEE1 inhibitor) or panobinostat (pan-HDAC inhibitor) exhibited synergistic in vitro lethal activity with MI against AML cells with mtNPM1. Treatment with adavosertib or panobinostat also reduced AML burden and improved survival in AML xenograft models sensitive or resistant to MI.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Anciano , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Panobinostat , Recurrencia Local de Neoplasia , Mutación , Citarabina/farmacología , Citarabina/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/uso terapéutico
8.
Leukemia ; 36(11): 2669-2677, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36127509

RESUMEN

Conditioning chemotherapy (CCT) has been shown to be essential for optimal efficacy of chimeric antigen receptor (CAR) T-cell therapy. Here, we determined whether the change in absolute lymphocyte count, referred to as delta lymphocyte index (DLIx), may serve as a surrogate marker for pharmacodynamic effects of CCT and whether it associated with germline genetic variants in patients with large B-cell lymphoma (LBCL). One-hundred and seventy-one patients were included, of which 86 (50%) received bridging therapy post-leukapheresis. Median DLIx was 0.5 × 109/L (range, 0.01-2.75 × 109/L) and was significantly higher in patients who achieved complete response (p = 0.04). On multivariate analysis, low DLIx was associated only with use of bridging therapy (odds ratio 0.4, 95% CI 0.2-0.8, p = 0.007). Low DLIx was independently associated with shorter progression-free (p = 0.02) and overall survival (p = 0.02). DLIx was associated with genetic variations related to drug metabolism and macrophage biology such as ABCB1, MISP and CPVL. The impact of CCT on lymphocyte count is affected by use of bridging therapy but change in lymphocyte count is independently associated with efficacy. Studies aimed at investigating macrophage biology in this setting may suggest strategies to increase the efficacy of CCT and improve outcomes.


Asunto(s)
Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Humanos , Inmunoterapia Adoptiva/efectos adversos , Antígenos CD19 , Recurrencia Local de Neoplasia/tratamiento farmacológico , Leucaféresis , Linfocitos/patología , Linfoma de Células B Grandes Difuso/patología
9.
Blood Cancer Discov ; 3(5): 385-393, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35533245

RESUMEN

To explore the role of clonal hematopoiesis (CH) in chimeric antigen receptor (CAR) T-cell therapy outcomes, we performed targeted deep sequencing on buffy coats collected during the 21 days before lymphodepleting chemotherapy from 114 large B-cell lymphoma patients treated with anti-CD19 CAR T cells. We detected CH in 42 (36.8%) pretreatment samples, most frequently in PPM1D (19/114) and TP53 (13/114) genes. Grade ≥3 immune effector cell-associated neurotoxicity syndrome (ICANS) incidence was higher in CH-positive patients than CH-negative patients (45.2% vs. 25.0%, P = 0.038). Higher toxicities with CH were primarily associated with DNMT3A, TET2, and ASXL1 genes (DTA mutations). Grade ≥3 ICANS (58.9% vs. 25%, P = 0.02) and ≥3 cytokine release syndrome (17.7% vs. 4.2%, P = 0.08) incidences were higher in DTA-positive than in CH-negative patients. The estimated 24-month cumulative incidence of therapy-related myeloid neoplasms after CAR T-cell therapy was higher in CH-positive than CH-negative patients [19% (95% CI, 5.5-38.7) vs. 4.2% (95% CI, 0.3-18.4), P = 0.028]. SIGNIFICANCE: Our study reveals that CH mutations, especially those associated with inflammation (DNMT3A, TET2, and ASXL1), are associated with severe-grade neurotoxicities in lymphoma patients receiving anti-CD19 CAR T-cell therapy. Further studies to investigate the mechanisms and interventions to improve toxicities in the context of CH are warranted. See related content by Uslu and June, p. 382. This article is highlighted in the In This Issue feature, p. 369.


Asunto(s)
Linfoma de Células B Grandes Difuso , Síndromes de Neurotoxicidad , Antígenos CD19/efectos adversos , Productos Biológicos , Hematopoyesis Clonal , Humanos , Inmunoterapia Adoptiva/efectos adversos , Linfoma de Células B Grandes Difuso/genética , Síndromes de Neurotoxicidad/epidemiología , Receptores de Antígenos de Linfocitos T/genética
10.
Toxicology ; 441: 152522, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32534104

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are organic chemicals with wide industrial and consumer uses. They are found ubiquitously at low levels in the environment and are detectable in humans and wildlife. Perfluorobutane Sulfonate (PFBS) is a short-chained PFAS used to replace perfluorooctane sulfonate in commerce. In general, the rate of clearance for the short-chained PFAS is faster than that for the long-chained congeners. This study evaluated the pharmacokinetic properties of PFBS and its hepatic transcriptional responses in CD-1 mice. Males and females were given PFBS by oral gavage at 30 or 300 mg/kg; controls received 0.5 % Tween-20 vehicle. Trunk blood was collected at 0.5, 1, 2, 4, 8, 16 and 24 h thereafter; liver and kidney were also harvested. Serum and tissue concentrations of PFBS were determined by HPLC-MS-MS. Expression of several hepatic nuclear receptor target genes was determined by qPCR. The half-life of PFBS was estimated as 5.8 h in the males and 4.5 h in the females. Tmax was reached within 1-2 h. Volume of distribution was similar between the two sexes (0.32-0.40 L/kg). The rate of PFBS clearance was linear with exposure doses. Within 24 h, serum PFBS declined to less than 5 % of Cmax. PFBS was detected in liver or kidney, although tissue levels of the chemical were only a fraction of those in serum. At 24 h after administration of 300 mg/kg PFBS, elevated expression of several hepatic genes targeted for PPARα, PPARy, and PXR but not by AhR, LXR or CAR was observed, with responses indistinguishable between males and females. Little to no transcriptional response was seen with the 30 mg/kg dose. The short serum half-lives of PFBS (4-5 h) in mice were comparable to those reported in rats. Although detection of PFBS in liver was low compared to that in serum even at the 300 mg/kg dose, the tissue level was sufficient to activate several hepatic nuclear receptors, which may represent an acute response to the chemical at a high dose.


Asunto(s)
Fluorocarburos/farmacocinética , Hígado/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Ácidos Sulfónicos/farmacocinética , Animales , Relación Dosis-Respuesta a Droga , Femenino , Semivida , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/metabolismo , Masculino , Tasa de Depuración Metabólica , Ratones , Reacción en Cadena de la Polimerasa , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores Sexuales , Transcriptoma/efectos de los fármacos
11.
Toxicol Pathol ; 36(4): 592-607, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18467677

RESUMEN

Health concerns have been raised because perfluorooctanoic acid (PFOA) is commonly found in the environment and can be detected in humans. In rodents, PFOA is a carcinogen and a developmental toxicant. PFOA is a peroxisome proliferator-activated receptor alpha (PPARalpha) activator; however, PFOA is capable of inducing heptomegaly in the PPARalpha-null mouse. To study the mechanism associated with PFOA toxicity, wild-type and PPARalpha-null mice were orally dosed for 7 days with PFOA (1 or 3 mg/kg) or the PPARalpha agonist Wy14,643 (50 mg/kg). Gene expression was evaluated using commercial microarrays. In wild-type mice, PFOA and Wy14,643 induced changes consistent with activation of PPARalpha. PFOA-treated wild-type mice deviated from Wy14,643-exposed mice with respect to genes involved in xenobiotic metabolism. In PFOA-treated null mice, changes were observed in transcripts related to fatty acid metabolism, inflammation, xenobiotic metabolism, and cell cycle regulation. Hence, a component of the PFOA response was found to be independent of PPARalpha. Although the signaling pathways responsible for these effects are not readily apparent, overlapping gene regulation by additional PPAR isoforms could account for changes related to fatty acid metabolism and inflammation, whereas regulation of xenobiotic metabolizing genes is suggestive of constitutive androstane receptor activation.


Asunto(s)
Caprilatos/toxicidad , Contaminantes Ambientales/toxicidad , Fluorocarburos/toxicidad , Perfilación de la Expresión Génica , Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , PPAR alfa/metabolismo , Animales , Caprilatos/farmacocinética , Contaminantes Ambientales/farmacocinética , Fluorocarburos/farmacocinética , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , PPAR alfa/genética , Pirimidinas/toxicidad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Toxicol Pathol ; 36(4): 632-9, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18467680

RESUMEN

Perfluorooctanoic acid (PFOA) is a chemical used in the production of fluoropolymers. Its persistence in the environment and presence in humans and wildlife has raised health concerns. Liver tumor induction by PFOA is thought to be mediated in rodents by PPAR-alpha. A recent US EPA scientific advisory board questioned the contribution of PPAR-alpha in PFOA-induced liver tumors. Liver response in CD-1, SV/129 wild-type (WT), and PPAR-alpha knockout (KO) SV/129 mice was evaluated after seven daily treatments of PFOA-NH4(+) (1, 3, or 10 mg/kg, p.o.) or the prototype PPARalpha-agonist Wyeth 14,643 (WY, 50 mg/kg). Livers were examined by light and electron microscopy. Proliferation was quantified after PCNA immunostaining. PFOA treatment induced a dose-dependent increase in hepatocyte hypertrophy and labeling index (LI) similar to WY in WT mice. Ultrastructural alterations of peroxisome proliferation were similar between WY-treated and 10 mg/kg PFOA-treated WT mice. KO mice had a dose-dependent increase in hepatocyte vacuolation but increased LI only at 10 mg PFOA/kg. WY-treated KO mice were not different from KO control. These data suggest that PPAR-alpha is required for WY- and PFOA-induced cellular alterations in WT mouse liver. Hepatic enlargement observed in KO mice may be due to an accumulation of cytoplasmic vacuoles that contain PFOA.


Asunto(s)
Caprilatos/toxicidad , Contaminantes Ambientales/toxicidad , Fluorocarburos/toxicidad , Hígado/efectos de los fármacos , PPAR alfa/fisiología , Pirimidinas/toxicidad , Animales , Caprilatos/sangre , Caprilatos/farmacocinética , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Contaminantes Ambientales/sangre , Contaminantes Ambientales/farmacocinética , Fluorocarburos/sangre , Fluorocarburos/farmacocinética , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/ultraestructura , Hígado/metabolismo , Hígado/ultraestructura , Ratones , Ratones Noqueados , Tamaño de los Órganos/efectos de los fármacos , PPAR alfa/agonistas , PPAR alfa/genética , Pirimidinas/sangre , Pirimidinas/farmacocinética
13.
Birth Defects Res ; 110(17): 1322-1334, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30347137

RESUMEN

BACKGROUND: Cleft palate (CP) is a common birth defect, occurring in an estimated 1 in 1,000 births worldwide. The secondary palate is formed by paired palatal shelves, consisting of a mesenchymal core with an outer layer of epithelial cells that grow toward each other, attach, and fuse. One of the mechanisms that can cause CP is failure of fusion, that is, failure to remove the epithelial seam between the palatal shelves to allow the mesenchyme confluence. Epidermal growth factor (EGF) plays an important role in palate growth and differentiation, while it may impede fusion. METHODS: We developed a 3D organotypic model using human mesenchymal and epithelial stem cells to mimic human embryonic palatal shelves, and tested the effects of human EGF (hEGF) on proliferation and fusion. Spheroids were generated from human umbilical-derived mesenchymal stem cells (hMSCs) directed down an osteogenic lineage. Heterotypic spheroids, or organoids, were constructed by coating hMSC spheroids with extracellular matrix solution followed by a layer of human progenitor epithelial keratinocytes (hPEKs). Organoids were incubated in co-culture medium with or without hEGF and assessed for cell proliferation and time to fusion. RESULTS: Osteogenic differentiation in hMSC spheroids was highest by Day 13. hEGF delayed fusion of organoids after 12 and 18 hr of contact. hEGF increased proliferation in organoids at 4 ng/ml, and proliferation was detected in hPEKs alone. CONCLUSION: Our results show that this model of human palatal fusion appropriately mimics the morphology of the developing human palate and responds to hEGF as expected.


Asunto(s)
Desarrollo Óseo/fisiología , Fisura del Paladar/embriología , Factor de Crecimiento Epidérmico/metabolismo , Células Epiteliales/citología , Células Madre Mesenquimatosas/citología , Hueso Paladar/embriología , Proliferación Celular/fisiología , Células Cultivadas , Humanos , Osteogénesis/fisiología , Esferoides Celulares/citología , Venas Umbilicales/citología
14.
Toxicol Sci ; 98(2): 571-81, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17488742

RESUMEN

Perfluorooctanoic acid (PFOA) is a member of a family of perfluorinated chemicals that have a variety of applications. PFOA persists in the environment and is found in wildlife and humans. In mice, PFOA is developmentally toxic producing mortality, delayed eye opening, growth deficits, and altered pubertal maturation. PFOA activates peroxisome proliferators-activated receptor-alpha (PPARalpha), a pathway critical to the mode of induction of liver tumors in rodents. The present study uses 129S1/SvlmJ wild-type (WT) and PPARalpha knockout (KO) mice to determine if PPARalpha mediates PFOA-induced developmental toxicity. Pregnant mice were dosed orally from gestation days 1-17 with water or 0.1, 0.3, 0.6, 1, 3, 5, 10, or 20 mg PFOA/kg. PFOA did not affect maternal weight, embryonic implantation, number, or weight of pups at birth. At 5 mg/kg, the incidence of full litter resorptions increased in both WT and KO mice. In WT, but not KO, neonatal survival was reduced (0.6 mg/kg) and eye opening was delayed (1 mg/kg). There was a trend across dose for reduced pup weight (WT and KO) on several postnatal days (PND), but only WT exposed to 1 mg/kg were significantly different from control (PND7-10 and 22). Maternal factors (e.g., background genetics) did not contribute to differences in postnatal mortality, as PFOA induced postnatal mortality in heterozygous pups born to WT or KO dams. In conclusion, early pregnancy loss was independent of PPARalpha expression. Delayed eye opening and deficits in postnatal weight gain appeared to depend on PPARalpha expression, although other mechanisms may contribute. PPARalpha was required for PFOA-induced postnatal lethality and expression of one copy of the gene was sufficient to mediate this effect.


Asunto(s)
Caprilatos/toxicidad , Pérdida del Embrión/inducido químicamente , Fluorocarburos/toxicidad , PPAR alfa/genética , Animales , Caprilatos/sangre , Caprilatos/farmacocinética , Pérdida del Embrión/sangre , Pérdida del Embrión/genética , Ojo/efectos de los fármacos , Ojo/crecimiento & desarrollo , Femenino , Fluorocarburos/sangre , Fluorocarburos/farmacocinética , Hígado/efectos de los fármacos , Hígado/crecimiento & desarrollo , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Tamaño de los Órganos/efectos de los fármacos , PPAR alfa/deficiencia , Embarazo
15.
Toxicol Sci ; 95(2): 462-73, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17098816

RESUMEN

Perfluorooctanoic acid (PFOA) is a persistent pollutant and is detectable in human serum (5 ng/ml in the general population of the Unites States). PFOA is used in the production of fluoropolymers which have applications in the manufacture of a variety of industrial and commercial products (e.g., textiles, house wares, electronics). PFOA is developmentally toxic and in mice affects growth, development, and viability of offspring. This study segregates the contributions of gestational and lactational exposures and considers the impact of restricting exposure to specific gestational periods. Pregnant CD-1 mice were dosed on gestation days (GD) 1-17 with 0, 3, or 5 mg PFOA/kg body weight, and pups were fostered at birth to give seven treatment groups: unexposed controls, pups exposed in utero (3U and 5U), lactationally (3L and 5L), or in utero + lactationally (3U + L and 5U + L). In the restricted exposure (RE) study, pregnant mice received 5 mg PFOA/kg from GD7-17, 10-17, 13-17, or 15-17 or 20 mg on GD15-17. In all PFOA-treated groups, dam weight gain, number of implantations, and live litter size were not adversely affected and relative liver weight increased. Treatment with 5 mg/kg on GD1-17 increased the incidence of whole litter loss and pups in surviving litters had reduced birth weights, but effects on pup survival from birth to weaning were only affected in 5U + L litters. In utero exposure (5U), in the absence of lactational exposure, was sufficient to produce postnatal body weight deficits and developmental delay in the pups. In the RE study, birth weight and survival were reduced by 20 mg/kg on GD15-17. Birth weight was also reduced by 5 mg/kg on GD7-17 and 10-17. Although all PFOA-exposed pups had deficits in postnatal weight gain, only those exposed on GD7-17 and 10-17 also showed developmental delay in eye opening and hair growth. In conclusion, the postnatal developmental effects of PFOA are due to gestational exposure. Exposure earlier in gestation produced stronger responses, but further study is needed to determine if this is a function of higher total dose or if there is a developmentally sensitive period.


Asunto(s)
Peso Corporal/efectos de los fármacos , Caprilatos/toxicidad , Contaminantes Ambientales/toxicidad , Fluorocarburos/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Animales , Peso al Nacer/efectos de los fármacos , Caprilatos/sangre , Contaminantes Ambientales/sangre , Femenino , Fluorocarburos/sangre , Edad Gestacional , Lactancia , Tamaño de la Camada/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos , Tamaño de los Órganos/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre
16.
Toxicology ; 387: 95-107, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28558994

RESUMEN

Perfluoroalkyl acids (PFAAs) are ubiquitous and persistent environmental contaminants. Compounds such as perfluoroocanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS) are readily found in the tissues of humans and wildlife. While PFOA and PFOS have been the subject of numerous studies since they were first described over a decade ago, less is known about the biological activity of PFHxS and PFNA. Most PFAAs are activators of peroxisome proliferator-activated receptor α (PPARα), although the biological effects of these compounds are likely mediated by other factors in addition to PPARα. To evaluate the effects of PFHxS and PFNA, male wild-type and Pparα-null mice were dosed by oral gavage with PFHxS (3 or 10mg/kg/day), PFNA (1 or 3mg/kg/day), or vehicle for 7days, and liver gene expression was evaluated by full-genome microarrays. Gene expression patterns were then compared to historical in-house data for PFOA and PFOS in addition to the experimental hypolipidemic agent, WY-14,643. While WY-14,643 altered most genes in a PPARα-dependent manner, approximately 11-24% of regulated genes in PFAA-treated mice were independent of PPARα. The possibility that PFAAs regulate gene expression through other molecular pathways was evaluated. Using data available through a microarray database, PFAA gene expression profiles were found to exhibit significant similarity to profiles from mouse tissues exposed to agonists of the constitutive activated receptor (CAR), estrogen receptor α (ERα), and PPARγ. Human PPARγ and ERα were activated by all four PFAAs in trans-activation assays from the ToxCast screening program. Predictive gene expression biomarkers showed that PFAAs activate CAR in both genotypes and cause feminization of the liver transcriptome through suppression of signal transducer and activator of transcription 5B (STAT5B). These results indicate that, in addition to activating PPARα as a primary target, PFAAs also have the potential to activate CAR, PPARγ, and ERα as well as suppress STAT5B.


Asunto(s)
Fluorocarburos/toxicidad , Perfilación de la Expresión Génica/métodos , Hígado/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , PPAR alfa/agonistas , Ácidos Sulfónicos/toxicidad , Transcripción Genética/efectos de los fármacos , Animales , Anticolesterolemiantes/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Biología Computacional , Receptor de Androstano Constitutivo , Bases de Datos Genéticas , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/farmacología , Ácidos Grasos , Regulación de la Expresión Génica , Hepatomegalia/inducido químicamente , Hepatomegalia/genética , Hepatomegalia/metabolismo , Hepatomegalia/patología , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones de la Cepa 129 , Ratones Noqueados , PPAR alfa/deficiencia , PPAR alfa/genética , PPAR gamma/agonistas , PPAR gamma/genética , PPAR gamma/metabolismo , Pirimidinas/farmacología , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Toxicology ; 378: 37-52, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28049043

RESUMEN

Persistent presence of perfluoroalkyl acids (PFAAs) in the environment is due to their extensive use in industrial and consumer products, and their slow decay. Biochemical tests in rodent demonstrated that these chemicals are potent modifiers of lipid metabolism and cause hepatocellular steatosis. However, the molecular mechanism of PFAAs interference with lipid metabolism remains to be elucidated. Currently, two major hypotheses are that PFAAs interfere with mitochondrial beta-oxidation of fatty acids and/or they affect the transcriptional activity of peroxisome proliferator-activated receptor α (PPARα) in liver. To determine the ability of structurally-diverse PFAAs to cause steatosis, as well as to understand the underlying molecular mechanisms, wild-type (WT) and PPARα-null mice were treated with perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), or perfluorohexane sulfonate (PFHxS), by oral gavage for 7days, and their effects were compared to that of PPARα agonist WY-14643 (WY), which does not cause steatosis. Increases in liver weight and cell size, and decreases in DNA content per mg of liver, were observed for all compounds in WT mice, and were also seen in PPARα-null mice for PFOA, PFNA, and PFHxS, but not for WY. In Oil Red O stained sections, WT liver showed increased lipid accumulation in all treatment groups, whereas in PPARα-null livers, accumulation was observed after PFNA and PFHxS treatment, adding to the burden of steatosis observed in control (untreated) PPARα-null mice. Liver triglyceride (TG) levels were elevated in WT mice by all PFAAs and in PPARα-null mice only by PFNA. In vitro ß-oxidation of palmitoyl carnitine by isolated rat liver mitochondria was not inhibited by any of the 7 PFAAs tested. Likewise, neither PFOA nor PFOS inhibited palmitate oxidation by HepG2/C3A human liver cell cultures. Microarray analysis of livers from PFAAs-treated mice indicated that the PFAAs induce the expression of the lipid catabolism genes, as well as those involved in fatty acid and triglyceride synthesis, in WT mice and, to a lesser extent, in PPARα-null mice. These results indicate that most of the PFAAs increase liver TG load and promote steatosis in mice We hypothesize that PFAAs increase steatosis because the balance of fatty acid accumulation/synthesis and oxidation is disrupted to favor accumulation.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Contaminantes Ambientales/toxicidad , Hígado Graso/inducido químicamente , Hígado Graso/genética , Fluorocarburos/toxicidad , Metabolismo de los Lípidos/genética , Animales , Línea Celular Tumoral , ADN/metabolismo , Ácidos Grasos/metabolismo , Hígado Graso/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/fisiología , PPAR alfa/genética , Palmitatos/metabolismo , Ratas Sprague-Dawley , Triglicéridos/metabolismo
19.
Reprod Toxicol ; 51: 133-44, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25543169

RESUMEN

Perfluorononanoic acid (PFNA) is a ubiquitous and persistent environmental contaminant. Although its levels in the environment and in humans are lower than those of perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA), a steady trend of increases in the general population in recent years has drawn considerable interest and concern. Previous studies with PFOS and PFOA have indicated developmental toxicity in laboratory rodent models. The current study extends the evaluation of these adverse outcomes to PFNA in mice. PFNA was given to timed-pregnant CD-1 mice by oral gavage daily on gestational day 1-17 at 1, 3, 5 or 10mg/kg; controls received water vehicle. Dams given 10mg/kg PFNA could not carry their pregnancy successfully and effects of this dose group were not followed. Similar to PFOS and PFOA, PFNA at 5mg/kg or lower doses produced hepatomegaly in the pregnant dams, but did not affect the number of implantations, fetal viability, or fetal weight. Mouse pups were born alive and postnatal survival in the 1 and 3mg/kg PFNA groups was not different from that in controls. In contrast, although most of the pups were also born alive in the 5mg/kg PFNA group, 80% of these neonates died in the first 10 days of life. The pattern of PFNA-induced neonatal death differed somewhat from those elicited by PFOS or PFOA. A majority of the PFNA-exposed pups survived a few days longer after birth than those exposed to PFOS or PFOA, which typically died within the first 2 days of postnatal life. Surviving neonates exposed to PFNA exhibited dose-dependent delays in eye opening and onset of puberty. In addition, increased liver weight seen in PFNA-exposed offspring persisted into adulthood and was likely related to the persistence of the chemical in the tissue. Evaluation of gene expression in fetal and neonatal livers revealed robust activation of peroxisome proliferator-activated receptor-alpha (PPARα) target genes by PFNA that resembled the responses of PFOA. Our results indicate that developmental toxicity of PFNA in mice is comparable to that of PFOS and PFOA, and that these adverse effects are likely common to perfluoroalkyl acids that persist in the body.


Asunto(s)
Fluorocarburos/toxicidad , Hígado/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Ácidos Grasos , Femenino , Fluorocarburos/sangre , Fluorocarburos/farmacocinética , Hígado/metabolismo , Hígado/patología , Intercambio Materno-Fetal , Ratones , Tamaño de los Órganos/efectos de los fármacos , PPAR alfa/genética , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Transcriptoma
20.
Neurotoxicol Teratol ; 26(3): 397-406, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15113601

RESUMEN

In vitro techniques are used increasingly to screen for and characterize neurotoxicants. In many cases, chemical-induced injury to developing neurons has been examined in vitro by assessing morphological changes in differentiation and neurite growth. This research evaluated the use of proteins associated with axonal growth and synaptogenesis as surrogates for morphological measurement of neuronal differentiation. PC12 cells, which differentiate upon nerve growth factor (NGF) stimulation, were used as the in vitro model. NGF-induced (50 ng/ml) differentiation (cells with at least one neurite with a length equal to the cell body diameter) and neurite growth (length of longest neurite) were determined using light microscopy and computer-based quantitative image analysis. PC12 cell differentiation and neurite growth reached a plateau after 6 days in culture. Expression of the axonal growth associated protein 43 (GAP-43) and the synaptic protein synapsin I were assessed simultaneously by Western blot during cell differentiation. Expression of GAP-43 was low on Culture Day 0 and increased progressively to maximum levels on Culture Day 5. Likewise, synapsin I expression increased slowly on Days 0-4, and then rapidly on Days 5-7 of culture. Pharmacologic inhibitors of NGF-induced signaling were used to test the sensitivity of the proteins to chemical disruption of differentiation. The MAP kinase inhibitor, U0126 (5-30 microM) and the PKC inhibitor, bisindolylmaleimide I (Bis I; 1.25-5 microM) inhibited differentiation and neurite outgrowth in a concentration-dependent manner. U0126 and Bis I significantly decreased GAP-43, but not synapsin I expression. Interestingly, the PI-PLC inhibitor edelfosine (ET-18; 5-30 microM) stimulated differentiation at early times of exposure followed by a significant decrease in neurite length at later time points. However, ET-18 did not alter the expression of GAP-43 or synapsin I. These data suggest that GAP-43 may be a useful indicator of the status of PC12 cell differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Neuritas/fisiología , Neuroquímica , Células PC12/citología , Animales , Western Blotting/métodos , Diferenciación Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Proteína GAP-43/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Procesamiento de Imagen Asistido por Computador/métodos , Factor de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Ratas , Sinapsinas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA