Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 314(2): L256-L275, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29074488

RESUMEN

Pulmonary vascular remodeling characterized by concentric wall thickening and intraluminal obliteration is a major contributor to the elevated pulmonary vascular resistance in patients with idiopathic pulmonary arterial hypertension (IPAH). Here we report that increased hypoxia-inducible factor 2α (HIF-2α) in lung vascular endothelial cells (LVECs) under normoxic conditions is involved in the development of pulmonary hypertension (PH) by inducing endothelial-to-mesenchymal transition (EndMT), which subsequently results in vascular remodeling and occlusive lesions. We observed significant EndMT and markedly increased expression of SNAI, an inducer of EndMT, in LVECs from patients with IPAH and animals with experimental PH compared with normal controls. LVECs isolated from IPAH patients had a higher level of HIF-2α than that from normal subjects, whereas HIF-1α was upregulated in pulmonary arterial smooth muscle cells (PASMCs) from IPAH patients. The increased HIF-2α level, due to downregulated prolyl hydroxylase domain protein 2 (PHD2), a prolyl hydroxylase that promotes HIF-2α degradation, was involved in enhanced EndMT and upregulated SNAI1/2 in LVECs from patients with IPAH. Moreover, knockdown of HIF-2α (but not HIF-1α) with siRNA decreases both SNAI1 and SNAI2 expression in IPAH-LVECs. Mice with endothelial cell (EC)-specific knockout (KO) of the PHD2 gene, egln1 (egln1EC-/-), developed severe PH under normoxic conditions, whereas Snai1/2 and EndMT were increased in LVECs of egln1EC-/- mice. EC-specific KO of the HIF-2α gene, hif2a, prevented mice from developing hypoxia-induced PH, whereas EC-specific deletion of the HIF-1α gene, hif1a, or smooth muscle cell (SMC)-specific deletion of hif2a, negligibly affected the development of PH. Also, exposure to hypoxia for 48-72 h increased protein level of HIF-1α in normal human PASMCs and HIF-2α in normal human LVECs. These data indicate that increased HIF-2α in LVECs plays a pathogenic role in the development of severe PH by upregulating SNAI1/2, inducing EndMT, and causing obliterative pulmonary vascular lesions and vascular remodeling.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Células Endoteliales/patología , Transición Epitelial-Mesenquimal , Hipertensión Pulmonar/etiología , Prolina Dioxigenasas del Factor Inducible por Hipoxia/fisiología , Animales , Células Cultivadas , Células Endoteliales/metabolismo , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipoxia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Remodelación Vascular
2.
Am J Physiol Lung Cell Mol Physiol ; 312(3): L309-L325, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27979859

RESUMEN

Capsaicin is an active component of chili pepper and a pain relief drug. Capsaicin can activate transient receptor potential vanilloid 1 (TRPV1) channels to increase cytosolic Ca2+ concentration ([Ca2+]cyt). A rise in [Ca2+]cyt in pulmonary artery smooth muscle cells (PASMCs) is an important stimulus for pulmonary vasoconstriction and vascular remodeling. In this study, we observed that a capsaicin-induced increase in [Ca2+]cyt was significantly enhanced in PASMCs from patients with idiopathic pulmonary arterial hypertension (IPAH) compared with normal PASMCs from healthy donors. In addition, the protein expression level of TRPV1 in IPAH PASMCs was greater than in normal PASMCs. Increasing the temperature from 23 to 43°C, or decreasing the extracellular pH value from 7.4 to 5.9 enhanced capsaicin-induced increases in [Ca2+]cyt; the acidity (pH 5.9)- and heat (43°C)-mediated enhancement of capsaicin-induced [Ca2+]cyt increases were greater in IPAH PASMCs than in normal PASMCs. Decreasing the extracellular osmotic pressure from 310 to 200 mOsmol/l also increased [Ca2+]cyt, and the hypo-osmolarity-induced rise in [Ca2+]cyt was greater in IPAH PASMCs than in healthy PASMCs. Inhibition of TRPV1 (with 5'-IRTX or capsazepine) or knockdown of TRPV1 (with short hairpin RNA) attenuated capsaicin-, acidity-, and osmotic stretch-mediated [Ca2+]cyt increases in IPAH PASMCs. Capsaicin induced phosphorylation of CREB by raising [Ca2+]cyt, and capsaicin-induced CREB phosphorylation were significantly enhanced in IPAH PASMCs compared with normal PASMCs. Pharmacological inhibition and knockdown of TRPV1 attenuated IPAH PASMC proliferation. Taken together, the capsaicin-mediated [Ca2+]cyt increase due to upregulated TRPV1 may be a critical pathogenic mechanism that contributes to augmented Ca2+ influx and excessive PASMC proliferation in patients with IPAH.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Capsaicina/farmacología , Hipertensión Pulmonar Primaria Familiar/patología , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/patología , Canales Catiónicos TRPV/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Adulto , Capsaicina/análogos & derivados , Proliferación Celular/efectos de los fármacos , Canales de Cloruro/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Diterpenos/farmacología , Conductividad Eléctrica , Espacio Extracelular/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Concentración de Iones de Hidrógeno , Masculino , Persona de Mediana Edad , Miocitos del Músculo Liso/efectos de los fármacos , Ósmosis/efectos de los fármacos , Fosforilación/efectos de los fármacos , Canales de Potasio/metabolismo , Temperatura
3.
Redox Biol ; 55: 102417, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35933902

RESUMEN

Ulcerative colitis (UC) is characterized by widespread relapsing inflammation of the colonic mucosa. Colitis-associated cancer (CAC) is one of the most serious complications of a prolonged history of UC. Hydrogen sulfide (H2S) has emerged as an important physiological mediator of gastrointestinal homeostasis, limiting mucosal inflammation and promoting tissue healing in response to injury. Inhibition of cystathionine-γ-lyase (CSE)-dependent H2S production in animal models of UC has been shown to exacerbate colitis and delay tissue repair. It is unknown whether CSE plays a role in CAC, or the downregulation of CSE expression and/or activity promotes CAC development. In humans, we observed a significant decrease in CSE expression in colonic biopsies from patients with UC. Using the dextran sodium sulfate (DSS) model of epithelium injury-induced colitis and global CSE KO mouse strain, we demonstrated that CSE is critical in limiting mucosal inflammation and stimulating epithelial cell proliferation in response to injury. In vitro studies showed that CSE activity stimulates epithelial cell proliferation, basal and cytokine-stimulated cell migration, as well as cytokine regulation of transepithelial permeability. In the azoxymethane (AOM)/DSS model of CAC, the loss of CSE expression accelerated both the development and progression of CAC. The increased tumor multiplicity and severity of CAC observed in CSE-KO mice were associated with reduced levels of mucosal IL-10 expression and increased levels of IL-6. Restoring CSE expression in bone marrow (BM) cells of CSE-KO mice through reciprocal BM transplantation raised mucosal IL-10 expression, decreased IL-6 level, and reduced the number of aberrant crypt foci and tumors in AOM/DSS-treated mice. These studies demonstrate that CSE expression in BM cells plays a critical role in suppressing CAC in mice. Furthermore, the data suggest that the inhibitory effects of CSE on the development of CAC are due, in part, to the modulation of mucosal pro-and anti-inflammatory cytokine expression.

4.
Environ Pollut ; 286: 117165, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33971471

RESUMEN

Biomass burning, a recurring global phenomenon is also considered an environmental menace, making headlines every year in India with onset of autumn months. Agriculture is demographically the broadest economic sector and plays a significant role in the overall socio-economic fabric of India. Hence, disposal of crop residue is done mainly by burning leading to deterioration of air quality. Residue burning in parts of India is blamed for changing air quality in nearby cities. The spatial distribution of these emissions has always been a challenge due to various data constraints. We hereby present a comprehensive spatially resolved seasonal high resolution gridded (∼10 km × âˆ¼10 km) emission inventory of major pollutants from crop residue burning source in India for the latest year 2018. The winter months contributes almost around ∼50% of total emission followed by summer (∼48%), which is the prime cause of changing air quality in nearby cities. Among all the crops; rice, wheat, maize and sugarcane accounts ∼90% of total PM10 load in the country. The estimated emission for PM2.5, PM10, BC and OC, CO, NOx, SO2, VOC, CH4 and CO2 are found to 990.68 Gg/yr, 1231.26 Gg/yr, 123.33 Gg/yr, 410.99 Gg/yr, 11208.18 Gg/yr, 484.55 Gg/yr, 144.66 Gg/yr, 1282.95 Gg/yr, 785.56 Gg/yr and 262051.06 Gg/yr respectively. The cropping pattern and its role in different geographic regions are analysed to identify all potential emission hotspots regions scattered across the country. The developed gridded emissions inventory is envisaged to serve as an important input to regional atmospheric chemistry transport model to better quantify its contribution in deteriorating air quality in various regions of India, paving the way to policy makers to better plan the mitigation and control strategies. The developed fundamental tool is likely to be useful for air quality management.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , India , Material Particulado/análisis , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA