Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Trends Genet ; 38(4): 310-311, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34949464

RESUMEN

Many letters of the plant genetic code have been read since the first plant genome was published in 2000 for Arabidopsis. In a recent paper, Marks et al. examined 798 plant genomes and provide a current view of plant genomics in terms of the quality of the assemblies, coupled with their taxonomical and geographical distribution.


Asunto(s)
Arabidopsis , Genómica , Arabidopsis/genética , Genoma de Planta/genética , Plantas/genética , Análisis de Secuencia de ADN
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731903

RESUMEN

To assess the impact of Enchytraeidae (potworms) on the functioning of the decomposer system, knowledge of the feeding preferences of enchytraeid species is required. Different food preferences can be explained by variations in enzymatic activities among different enchytraeid species, as there are no significant differences in the morphology or anatomy of their alimentary tracts. However, it is crucial to distinguish between the contribution of microbial enzymes and the animal's digestive capacity. Here, we computationally analyzed the endogenous digestive enzyme genes in Enchytraeus albidus. The analysis was based on RNA-Seq of COI-monohaplotype culture (PL-A strain) specimens, utilizing transcriptome profiling to determine the trophic position of the species. We also corroborated the results obtained using transcriptomics data from genetically heterogeneous freeze-tolerant strains. Our results revealed that E. albidus expresses a wide range of glycosidases, including GH9 cellulases and a specific digestive SH3b-domain-containing i-type lysozyme, previously described in the earthworm Eisenia andrei. Therefore, E. albidus combines traits of both primary decomposers (primary saprophytophages) and secondary decomposers (sapro-microphytophages/microbivores) and can be defined as an intermediate decomposer. Based on assemblies of publicly available RNA-Seq reads, we found close homologs for these cellulases and i-type lysozymes in various clitellate taxa, including Crassiclitellata and Enchytraeidae.


Asunto(s)
Perfilación de la Expresión Génica , Oligoquetos , Transcriptoma , Animales , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Oligoquetos/genética , Oligoquetos/enzimología , Digestión/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo
3.
BMC Plant Biol ; 23(1): 445, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37735356

RESUMEN

BACKGROUND: Drought is a major environmental stress that affects crop productivity worldwide. Although previous research demonstrated links between strigolactones (SLs) and drought, here we used barley (Hordeum vulgare) SL-insensitive mutant hvd14 (dwarf14) to scrutinize the SL-dependent mechanisms associated with water deficit response. RESULTS: We have employed a combination of transcriptomics, proteomics, phytohormonomics analyses, and physiological data to unravel differences between wild-type and hvd14 plants under drought. Our research revealed that drought sensitivity of hvd14 is related to weaker induction of abscisic acid-responsive genes/proteins, lower jasmonic acid content, higher reactive oxygen species content, and lower wax biosynthetic and deposition mechanisms than wild-type plants. In addition, we identified a set of transcription factors (TFs) that are exclusively drought-induced in the wild-type barley. CONCLUSIONS: Critically, we resolved a comprehensive series of interactions between the drought-induced barley transcriptome and proteome responses, allowing us to understand the profound effects of SLs in alleviating water-limiting conditions. Several new avenues have opened for developing barley more resilient to drought through the information provided. Moreover, our study contributes to a better understanding of the complex interplay between genes, proteins, and hormones in response to drought, and underscores the importance of a multidisciplinary approach to studying plant stress response mechanisms.


Asunto(s)
Hordeum , Hordeum/genética , Sequías , Multiómica , Percepción
4.
BMC Genomics ; 23(1): 177, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246029

RESUMEN

BACKGROUND: High temperature shock is becoming increasingly common in our climate, affecting plant growth and productivity. The ability of a plant to survive stress is a complex phenomenon. One of the essential tissues for plant performance under various environmental stimuli is the crown. However, the molecular characterization of this region remains poorly investigated. Gibberellins play a fundamental role in whole-plant stature formation. This study identified plant stature modifications and crown-specific transcriptome re-modeling in gibberellin-deficient barley sdw1.a (BW827) and sdw1.d (BW828) mutants exposed to increased temperature. RESULTS: The deletion around the sdw1 gene in BW827 was found to encompass at least 13 genes with primarily regulatory functions. A bigger genetic polymorphism of BW828 than of BW827 in relation to wild type was revealed. Transcriptome-wide sequencing (RNA-seq) revealed several differentially expressed genes involved in gibberellin metabolism and heat response located outside of introgression regions. It was found that HvGA20ox4, a paralogue of the HvGA20ox2 gene, was upregulated in BW828 relative to other genotypes, which manifested as basal internode elongation. The transcriptome response to elevated temperature differed in the crown of sdw1.a and sdw1.d mutants; it was most contrasting for HvHsf genes upregulated under elevated temperature in BW828, whereas those specific to BW827 were downregulated. In-depth examination of sdw1 mutants revealed also some differences in their phenotypes and physiology. CONCLUSIONS: We concluded that despite the studied sdw1 mutants being genetically related, their heat response seemed to be genotype-specific and observed differences resulted from genetic background diversity rather than single gene mutation, multiple gene deletion, or allele-specific expression of the HvGA20ox2 gene. Differences in the expressional reaction of genes to heat in different sdw1 mutants, found to be independent of the polymorphism, could be further explained by in-depth studies of the regulatory factors acting in the studied system. Our findings are particularly important in genetic research area since molecular response of crown tissue has been marginally investigated, and can be useful for wide genetic research of crops since barley has become a model plant for them.


Asunto(s)
Hordeum , Regulación de la Expresión Génica de las Plantas , Genotipo , Respuesta al Choque Térmico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Hordeum/genética , Fenotipo
5.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494371

RESUMEN

Mechanisms involved in the de-acclimation of herbaceous plants caused by warm periods during winter are poorly understood. This study identifies the genes associated with this mechanism in winter barley. Seedlings of eight accessions (four tolerant and four susceptible to de-acclimation cultivars and advanced breeding lines) were cold acclimated for three weeks and de-acclimated at 12 °C/5 °C (day/night) for one week. We performed differential expression analysis using RNA sequencing. In addition, reverse-transcription quantitative real-time PCR and enzyme activity analyses were used to investigate changes in the expression of selected genes. The number of transcripts with accumulation level changed in opposite directions during acclimation and de-acclimation was much lower than the number of transcripts with level changed exclusively during one of these processes. The de-acclimation-susceptible accessions showed changes in the expression of a higher number of functionally diverse genes during de-acclimation. Transcripts associated with stress response, especially oxidoreductases, were the most abundant in this group. The results provide novel evidence for the distinct molecular regulation of cold acclimation and de-acclimation. Upregulation of genes controlling developmental changes, typical for spring de-acclimation, was not observed during mid-winter de-acclimation. Mid-winter de-acclimation seems to be perceived as an opportunity to regenerate after stress. Unfortunately, it is competitive to remain in the cold-acclimated state. This study shows that the response to mid-winter de-acclimation is far more expansive in de-acclimation-susceptible cultivars, suggesting that a reduced response to the rising temperature is crucial for de-acclimation tolerance.


Asunto(s)
Aclimatación/genética , Frío , Estudios de Asociación Genética , Hordeum/fisiología , Estaciones del Año , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Transcriptoma
6.
Plant Cell Environ ; 43(9): 2239-2253, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32501539

RESUMEN

Strigolactones (SLs) are a group of plant hormones involved in many aspects of plant development and stress adaptation. Here, we investigated the drought response of a barley (Hordeum vulgare L.) mutant carrying a missense mutation in the gene encoding the SL-specific receptor HvD14. Our results clearly showed that hvd14.d mutant is hyper-sensitive to drought stress. This was illustrated by a lower leaf relative water content (RWC), impaired photosynthesis, disorganization of chloroplast structure, altered stomatal density and slower closure of stomata in response to drought in the mutant compared to the wild type parent cultivar Sebastian. Although the content of abscisic acid (ABA) and its derivatives remained unchanged in the mutant, significant differences in expression of genes related to ABA biosynthesis were observed. Moreover, hvd14.d was insensitive to ABA during seed germination. Analysis of Arabidopsis thaliana mutant atd14-1 also demonstrated that mutation in the SL receptor resulted in increased sensitivity to drought. Our results indicate that the drought-sensitive phenotype of barley SL mutant might be caused by a disturbed ABA metabolism and/or signalling pathways. These results together uncovered a link between SL signalling and ABA-dependent drought stress response in barley.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/fisiología , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Hordeum/fisiología , Lactonas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Deshidratación , Sequías , Regulación de la Expresión Génica de las Plantas , Germinación/efectos de los fármacos , Germinación/fisiología , Hordeum/efectos de los fármacos , Mutación , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Estomas de Plantas/fisiología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Semillas/efectos de los fármacos , Semillas/fisiología , Transducción de Señal/genética
7.
Int J Mol Sci ; 21(12)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570736

RESUMEN

Jasmonates modulate many growth and developmental processes and act as stress hormones that play an important role in plant tolerance to biotic and abiotic stresses. Therefore, there is a need to identify the genes that are regulated through the jasmonate signalling pathway. Aquaporins, and among them the Tonoplast Intrinsic Proteins (TIPs), form the channels in cell membranes that are responsible for the precise regulation of the movement of water and other substrates between cell compartments. We identified the cis-regulatory motifs for the methyl jasmonate (MeJA)-induced genes in the promoter regions of all the HvTIP genes, which are active in barley seedlings, and thus we hypothesised that the HvTIP expression could be a response to jasmonate signalling. In the presented study, we determined the effect of methyl jasmonate on the growth parameters and photosynthesis efficiency of barley seedlings that had been exposed to different doses of MeJA (15-1000 µM × 120 h) in a hydroponic solution. All of the applied MeJA concentrations caused a significant reduction of barley seedling growth, which was most evident in the length of the first leaf sheath and dry leaf weight. The observed decrease of the PSII parameters after the exposure to high doses of MeJA (500 µM or higher) was associated with the downregulation of HvPsbR gene encoding one of the extrinsic proteins of the Oxygen Evolving Complex. The reduced expression of HvPsbR might lead to the impairment of the OEC action, manifested by the occurrence of the K-band in an analysis of fluorescence kinetics after MeJA treatment as well as reduced photosynthesis efficiency. Furthermore, methyl jasmonate treatment caused a decrease in the nitrogen content in barley leaves, which was associated with an increased expression the four tonoplast aquaporin genes (HvTIP1;2, HvTIP2;2, HvTIP4;1 and HvTIP4;2) predicted to transport the nitrogen compounds from the vacuole to the cytosol. The upregulation of the nitrogen-transporting HvTIPs might suggest their involvement in the vacuolar unloading of ammonia and urea, which both could be remobilised when the nitrogen content in the leaves decreases. Our research provides tips on physiological role of the individual TIP subfamily members of aquaporins under methyl jasmonate action.


Asunto(s)
Acetatos/farmacología , Ciclopentanos/farmacología , Hordeum/fisiología , Proteínas de la Membrana/genética , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hordeum/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Nitrógeno/metabolismo , Fotosíntesis/efectos de los fármacos , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Semillas/efectos de los fármacos , Semillas/fisiología
8.
Int J Mol Sci ; 20(24)2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31888211

RESUMEN

Balanced photosynthesis under drought is essential for better survival and for agricultural benefits in terms of biomass and yield. Given the current attempts to improve the photosynthetic efficiency for greater crop yield, the explanation of the genetic basis of that process, together with the phenotypic analysis, is significant in terms of both basic studies and potential agricultural application. Therefore, the main objective of this study was to uncover the molecular basis of the photosynthesis process under drought stress in barley. To address that goal, we conducted transcriptomic examination together with detailed photosynthesis analysis using the JIP-test. Using this approach, we indicated that photosynthesis is a process that is very early affected in barley seedlings treated with severe drought stress. Rather than focusing on individual genes, our strategy was pointed to the identification of groups of genes with similar expression patterns. As such, we identified and annotated almost 150 barley genes as crucial core-components of photosystems, electron transport components, and Calvin cycle enzymes. Moreover, we designated 17 possible regulatory interactions between photosynthesis-related genes and transcription factors in barley. Summarizing, our results provide a list of candidate genes for future genetic research and improvement of barley drought tolerance by targeting photosynthesis.


Asunto(s)
Sequías , Hordeum/genética , Hordeum/fisiología , Fotosíntesis/genética , Estrés Fisiológico/genética , Ácido Abscísico/farmacología , Clorofila A/metabolismo , Deshidratación , Transporte de Electrón/efectos de los fármacos , Fluorescencia , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Hordeum/efectos de los fármacos , Oxígeno/metabolismo , Fotosíntesis/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Plantones/efectos de los fármacos , Plantones/fisiología , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/metabolismo , Transcriptoma/genética
9.
J Exp Bot ; 67(4): 1079-94, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26585228

RESUMEN

An important part of the root system is the root hairs, which play a role in mineral and water uptake. Here, we present an analysis of the transcriptomic response to water deficiency of the wild-type (WT) barley cultivar 'Karat' and its root-hairless mutant rhl1.a. A comparison of the transcriptional changes induced by water stress resulted in the identification of genes whose expression was specifically affected in each genotype. At the onset of water stress, more genes were modulated by water shortage in the roots of the WT plants than in the roots of rhl1.a. The roots of the WT plants, but not of rhl1.a, specifically responded with the induction of genes that are related to the abscisic acid biosynthesis, stomatal closure, and cell wall biogenesis, thus indicating the specific activation of processes that are related to water-stress signalling and protection. On the other hand, the processes involved in the further response to abiotic stimuli, including hydrogen peroxide, heat, and high light intensity, were specifically up-regulated in the leaves of rhl1.a. An extended period of severe stress caused more drastic transcriptome changes in the roots and leaves of the rhl1.a mutant than in those of the WT. These results are in agreement with the much stronger damage to photosystem II in the rhl1.a mutant than in its parent cultivar after 10 d of water stress. Taking into account the putative stress sensing and signalling features of the root hair transcriptome, we discuss the role of root hairs as sensors of environmental conditions.


Asunto(s)
ADN de Plantas/genética , Sequías , Hordeum/fisiología , Raíces de Plantas/fisiología , Transcriptoma , ADN de Plantas/metabolismo , Perfilación de la Expresión Génica , Hordeum/genética , Análisis de Secuencia de ADN
11.
Biochimie ; 221: 38-59, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38242278

RESUMEN

Although enchytraeids have gained popularity in scientific research, fundamental questions regarding their feeding ecology and biology remain largely unexplored. This study investigates α-amylases, major digestive enzymes responsible for hydrolyzing starch and similar polysaccharides into sugars, in Enchytraeus albidus. Genetic data related to α-amylases is currently lacking for the family Enchytraeidae but also for the entire Annelida. To detect and identify coding sequences of the expressed α-amylase genes in COI-monohaplotype culture (PL-A strain) of E. albidus, we used classical "gene fishing" and transcriptomic approaches. We also compared coding sequence variants of α-amylase retrieved from transcriptomic data related to freeze-tolerant strains. Our results reveal that E. albidus possesses two distinct α-amylase genes (Amy I and Amy II) that are homologs to earthworm Eisenia fetida Ef-Amy genes. Different strains of E. albidus possess distinctive alleles of α-amylases with unique SNP patterns specific to a particular strain. Unlike Amy II, Amy I seems to be a highly polymorphic and multicopy gene. The domain architecture of the putative Amy proteins was found the same as for classical animal α-amylases with ABC-domains. A characteristic feature of Amy II is the lack of GHGA motif in the flexible loop region, similarly to many insect amylases. We identified "Enchytraeus-Eisenia type" α-amylase homologs in other clitellates and polychaetes, indicating the ancestral origin of Amy I/II proteins in Annelida. This study provides the first insight into the endogenous non-proteolytic digestive enzyme genes in potworms, discusses the evolution of Amy α-amylases in Annelida, and explores phylogenetic implications.


Asunto(s)
alfa-Amilasas , alfa-Amilasas/genética , alfa-Amilasas/metabolismo , alfa-Amilasas/química , Animales , Evolución Molecular , Filogenia , ADN Complementario/genética , Anélidos/genética , Anélidos/enzimología , Oligoquetos/genética , Oligoquetos/enzimología , Secuencia de Aminoácidos
12.
Plant Signal Behav ; 19(1): 2371693, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38923879

RESUMEN

One of the main signal transduction pathways that modulate plant growth and stress responses, including drought, is the action of phytohormones. Recent advances in omics approaches have facilitated the exploration of plant genomes. However, the molecular mechanisms underlying the response in the crown of barley, which plays an essential role in plant performance under stress conditions and regeneration after stress treatment, remain largely unclear. The objective of the present study was the elucidation of drought-induced molecular reactions in the crowns of different barley phytohormone mutants. We verified the hypothesis that defects of gibberellins, brassinosteroids, and strigolactones action affect the transcriptomic, proteomic, and hormonal response of barley crown to the transitory drought influencing plant development under stress. Moreover, we assumed that due to the strong connection between strigolactones and branching the hvdwarf14.d mutant, with dysfunctional receptor of strigolactones, manifests the most abundant alternations in crowns and phenotype under drought. Finally, we expected to identify components underlying the core response to drought which are independent of the genetic background. Large-scale analyses were conducted using gibberellins-biosynthesis, brassinosteroids-signaling, and strigolactones-signaling mutants, as well as reference genotypes. Detailed phenotypic evaluation was also conducted. The obtained results clearly demonstrated that hormonal disorders caused by mutations in the HvGA20ox2, HvBRI1, and HvD14 genes affected the multifaceted reaction of crowns to drought, although the expression of these genes was not induced by stress. The study further detected not only genes and proteins that were involved in the drought response and reacted specifically in mutants compared to the reaction of reference genotypes and vice versa, but also the candidates that may underlie the genotype-universal stress response. Furthermore, candidate genes involved in phytohormonal interactions during the drought response were identified. We also found that the interplay between hormones, especially gibberellins and auxins, as well as strigolactones and cytokinins may be associated with the regulation of branching in crowns exposed to drought. Overall, the present study provides novel insights into the molecular drought-induced responses that occur in barley crowns.


Asunto(s)
Sequías , Hordeum , Mutación , Reguladores del Crecimiento de las Plantas , Hordeum/genética , Hordeum/metabolismo , Hordeum/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Mutación/genética , Giberelinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Brasinoesteroides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Lactonas/metabolismo
13.
Plant Mol Biol ; 81(1-2): 189-209, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23196831

RESUMEN

Although the importance of abscisic acid (ABA) in plant development and response to abiotic and biotic stresses is well recognized, the molecular basis of the signaling pathway has not been fully elucidated. Mutants in genes related to ABA are widely used as a tool for gaining insight into the mechanisms of ABA signal transduction and ABA-dependent stress response. We used a genetic approach of a suppressor screening in order to decipher the interaction between ABH1 (CBP80) and other components of ABA signaling. ABH1 (CBP80) encodes a large subunit of CBC (CAP BINDING COMPLEX) and the abh1 mutant is drought-tolerant and hypersensitive to ABA during seed germination. The suppressor mutants of abh1 were generated after chemical mutagenesis. The mutant named soa1 (suppressor of abh1 hypersensitivity to ABA 1) displayed an ABA-insensitive phenotype during seed germination. The genetic analysis showed that the soa1 phenotype is dominant in relation to abh1 and segregates as a single locus. Based on soa1's response to a wide spectrum of physiological assays during different stages of development, we used the candidate-genes approach in order to identify a suppressor gene. The molecular analysis revealed that mutation causing the phenotype of soa1 occurred in the ABI4 (ABA insensitive 4) gene. Analysis of pre-miR159 expression, whose processing depends on CBC, as well as targets of miR159: MYB33 and MYB101, which are positive regulators of ABA signaling, revealed a possible link between CBP80 (ABH1) and ABI4 presented here.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión a Caperuzas de ARN/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Sequías , Epistasis Genética , Genes de Plantas , Genes Supresores , Germinación/genética , Mutación , Presión Osmótica , Semillas/crecimiento & desarrollo , Estrés Fisiológico
14.
Int J Mol Sci ; 14(7): 13403-32, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23807502

RESUMEN

Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1) insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants-soa2 (suppressor of abh1 hypersensitivity to ABA 2) and soa3 (suppressor of abh1 hypersensitivity to ABA 3). Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0-the parental line of abh1) in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line-abh1. Taking into account that suppressor mutants had the same genetic background as their parental line-abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Germinación/fisiología , Mutación , Proteínas de Unión a Caperuzas de ARN/metabolismo , Semillas/metabolismo , Transducción de Señal/fisiología , Estrés Fisiológico , Ácido Abscísico/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión a Caperuzas de ARN/genética , Semillas/genética
15.
Trends Plant Sci ; 28(8): 873-875, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37208202

RESUMEN

Recently. Mei et al. discovered the molecular mechanism behind the synergistic action of auxins and jasmonates in enhancing the role of abscisic acid (ABA) in seed germination. They found that JASMONATE-ZIM DOMAIN (JAZ) proteins interact with AUXIN RESPONSE FACTOR (ARF)-16 to mediate auxin-jasmonic acid (JA) crosstalk. Furthermore, they revealed that ARF16 interacts with ABSCISIC ACID INSENSITIVE (ABI)-5 and positively modulates ABA responses at seed germination.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Germinación , Semillas/genética , Semillas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
16.
Plant Sci ; 337: 111894, 2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37813193

RESUMEN

NAC family gene - SNAC1 (Stress-responsive NAC1) is responsive to drought, salt, cold stress, and ABA. It acts as a regulator in mediating tolerance to abiotic stress through different pathways. Abiotic stress, among them drought and salinity, are adverse factors for plant growth and crop productivity. SNAC1 was an object of high interest according to the effect of improved drought and salt tolerance when overexpressed in different plant species such as rice, wheat, barley, cotton, maize, banana, or oat. SNAC1 functions by regulating the expression of genes that contain the NAC Recognized Sequence (NACRS) within their promoter region. This gene is induced by drought, specifically in guard cells. Its downstream targets have been identified. The role of SNAC1 in molecular and physiological responses during abiotic stress has been proposed, but this knowledge still needs to be expanded. Here, we describe recent advances in understanding the action of SNAC1 in adapting plants to abiotic stress.

17.
Front Plant Sci ; 14: 1270180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849845

RESUMEN

Stomata, key gatekeepers of plant hydration, have long been known to play a pivotal role in mitigating the impacts of abiotic stressors. However, the complex molecular mechanisms underscoring this role remain unresolved fully and continue to be the subject of research. In the context of water-use efficiency (WUE), a key indicator of a plant's ability to conserve water, this aspect links intrinsically with stomatal behavior. Given the pivotal role of stomata in modulating water loss, it can be argued that the complex mechanisms governing stomatal development and function will significantly influence a plant's WUE under different abiotic stress conditions. Addressing these calls for a concerted effort to strengthen plant adaptability through advanced, targeted research. In this vein, recent studies have illuminated how specific stressors trigger alterations in gene expression, orchestrating changes in stomatal pattern, structure, and opening. This reveals a complex interplay between stress stimuli and regulatory sequences of essential genes implicated in stomatal development, such as MUTE, SPCH, and FAMA. This review synthesizes current discoveries on the molecular foundations of stomatal development and behavior in various stress conditions and their implications for WUE. It highlights the imperative for continued exploration, as understanding and leveraging these mechanisms guarantee enhanced plant resilience amid an ever-changing climatic landscape.

18.
Front Plant Sci ; 14: 1144990, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008485

RESUMEN

Seed germination is an essential step in a plant's life cycle. It is controlled by complex physiological, biochemical, and molecular mechanisms and external factors. Alternative splicing (AS) is a co-transcriptional mechanism that regulates gene expression and produces multiple mRNA variants from a single gene to modulate transcriptome diversity. However, little is known about the effect of AS on the function of generated protein isoforms. The latest reports indicate that alternative splicing (AS), the relevant mechanism controlling gene expression, plays a significant role in abscisic acid (ABA) signaling. In this review, we present the current state of the art about the identified AS regulators and the ABA-related changes in AS during seed germination. We show how they are connected with the ABA signaling and the seed germination process. We also discuss changes in the structure of the generated AS isoforms and their impact on the functionality of the generated proteins. Also, we point out that the advances in sequencing technology allow for a better explanation of the role of AS in gene regulation by more accurate detection of AS events and identification of full-length splicing isoforms.

19.
Front Plant Sci ; 14: 1247853, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941662

RESUMEN

Introduction: Breeding barley cultivars adapted to drought requires in-depth knowledge on physiological drought responses. Methods: We used a high-throughput functional phenotyping platform to examine the response of four high-yielding European spring barley cultivars to a standardized drought treatment imposed around flowering. Results: Cv. Chanell showed a non-conserving water-use behavior with high transpiration and maximum productivity under well-watered conditions but rapid transpiration decrease under drought. The poor recovery upon re-irrigation translated to large yield losses. Cv. Baronesse showed the most water-conserving behavior, with the lowest pre-drought transpiration and the most gradual transpiration reduction under drought. Its good recovery (resilience) prevented large yield losses. Cv. Formula was less conserving than cv. Baronesse and produced low yet stable yields. Cv. RGT's dynamic water use with high transpiration under ample water supply and moderate transpiration decrease under drought combined with high resilience secured the highest and most stable yields. Discussion: Such a dynamic water-use behavior combined with higher drought resilience and favorable root traits could potentially create an ideotype for intermediate drought. Prospective studies will examine these results in field experiments and will use the newly gained understanding on water use in barley to improve process descriptions in crop simulation models to support crop model-aided ideotype design.

20.
Curr Biol ; 33(23): R1246-R1261, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38052178

RESUMEN

Climate change threatens global food and nutritional security through negative effects on crop growth and agricultural productivity. Many countries have adopted ambitious climate change mitigation and adaptation targets that will exacerbate the problem, as they require significant changes in current agri-food systems. In this review, we provide a roadmap for improved crop production that encompasses the effective transfer of current knowledge into plant breeding and crop management strategies that will underpin sustainable agriculture intensification and climate resilience. We identify the main problem areas and highlight outstanding questions and potential solutions that can be applied to mitigate the impacts of climate change on crop growth and productivity. Although translation of scientific advances into crop production lags far behind current scientific knowledge and technology, we consider that a holistic approach, combining disciplines in collaborative efforts, can drive better connections between research, policy, and the needs of society.


Asunto(s)
Cambio Climático , Productos Agrícolas , Fitomejoramiento , Agricultura , Producción de Cultivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA