Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 54(6): 2916-35, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25714352

RESUMEN

This paper presents the synthesis and characterization of a series of pincer ligands and their Ni, Pd, Pt, and Rh complexes. The ligands under examination are based on a diarylamine which is modified either by two phosphino (-PR2) substituents in the ortho-positions (PNP ligands) or by a combination of a phosphino and an iminyl (-CH═NX) substituent (PNN ligands). The ligands can be broken down into three groups: (a) C2v-symmetric PNP ligands with identical side -PR2 donors, (b) Cs-symmetric PNP' ligands with different -PR2 side donors, and (c) PNN ligands containing a -P(i)Pr2 side donor. All of the ligands under study readily formed square-planar complexes of the types (PNZ)PdCl, (PNZ)Pd(OAc), and (PNZ)RhCO, where PNZ is the corresponding anionic tridentate pincer ligand. For select PNP ligands, (PNP)NiCl and (PNP)PtCl were also studied. The (PNZ)MCl complexes (M = Ni, Pd, Pt) underwent quasireversible oxidation in cyclic voltammetry experiments. Based on the close similarity of formal potentials for Ni, Pd, and Pt analogs, and based on the previous literature evidence, these oxidation events are ascribed primarily to the PNZ ligand, and the E1/2 values can be used to compare the ease of oxidation of different ligands. A (PNP)PdCl complex containing methoxy substituents para- to the central nitrogen underwent two quasireversible oxidations. Two mono-oxidized complexes were isolated and structurally characterized in comparison to their neutral analog, revealing minimal changes in the bond distances and angles. Several other neutral complexes were also structurally characterized. The carbonyl stretching frequency in (PNZ)RhCO complexes was used to gauge the donating ability of the various pincer ligands toward the metal. Comparison of E1/2 values for (PNZ)PdCl and νCO values for (PNZ)RhCO revealed that the two are not consistently correlated across all the studied ligands and can be tuned to different degrees through judicious ligand alteration.

2.
Inorg Chem ; 52(13): 7811-6, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23746117

RESUMEN

An atom-economical synthesis of arsaalkenes via a net coupling of aryl arsines with aryl or alkyl isocyanides at zirconium is presented. Reaction of zirconium arsenido complexes (N3N)ZrAsHAr [N3N = N(CH2CH2NSiMe3)3(3-); Ar = Ph, (2) Mes (3)] with aryl and alkyl isocyanides yields arsaalkene products of the general form (N3N)Zr[NRC(H)═As(Ar)]. Two examples (5: R = Mes, Ar = Ph; 6: R = CH2Ph, Ar = Mes) were structurally characterized. Observation of intermediates in the reaction and structural characterization of the previously reported 1,1-insertion product benzylisocyanide with (N3N)ZrAsPh2 (8), (N3N)Zr[η(2)-C(PPh2)=NCH2Ph] (9), support the mechanistic hypothesis that these reactions occur via 1,1-insertion followed by rearrangement.

3.
Dalton Trans ; 52(43): 16027-16031, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37850380

RESUMEN

Synthesis of a series of hydrocarbon-soluble triarylamines bearing F, CF3, and Br substituents showing quasi-reversible redox events in the 0.59-1.32 V range is reported. Chemical oxidation of the amines was carried out with 0.5PhI(OAc)2/Me3SiX/Na[RCB11Cl11] (X = Cl or OTf, R = H or Me), and a few aminium salts were isolated as pure solids.

4.
Dalton Trans ; (33): 4488-98, 2008 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-18698453

RESUMEN

Triamidoamine-supported zirconium complexes have been demonstrated to catalyze a range of bond-forming events utilizing arsines. Three different mechanisms have been observed in these reactions. In the first mechanism, triamidoamine-supported zirconium complexes of the general type (N3N)ZrX (N3N =N(CH2CH2NSiMe3)33-; X = monoanionic ligand) catalyzed the dehydrogenative dimerization of diphenylarsine. Mechanistic analysis revealed that As-As bond formation proceeds via sigma-bond metathesis steps similar to the previously reported dehydrocoupling of phosphines by the same catalysts. In the second mechanism, sterically encumbered primary arsines appear to be dehydrocoupled via alpha elimination of an arsinidene fragment. Dehydrocoupling of dmpAsH2 (dmp = 2,6-dimesitylphenyl) to form (dmp)As = As(dmp) by (N3N)Zr-complexes appeared to proceed via elimination of dmpAs: from the arsenido intermediate, (N3N)ZrAsH(dmp). Further support for -arsinidene elimination came from the thermal decomposition of (N3N)ZrAsHMes (9) to (MesAs)4 (10), which obeyed first-order kinetics. In the third mechanism, the observation of stoichiometric insertion reactivity of the Zr-As bond with polar substrates, PhCH2NC, PhCN, (1-napthyl)NCS, and CS2, led to the development of intermolecular hydroarsination catalysis of terminal alkynes. Here, (N3N)ZrAsPh2 (2) catalyzed the addition of diphenylarsine to phenylacetylene and 1-hexyne to give the respective vinylarsine products. Arsenido complexes 2 and 9 and tetraarsine 10 have been structurally characterized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA