Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem Lett ; 11(15): 5992-5999, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32633980

RESUMEN

Doping through the incorporation of transition metal ions allows for the emergence of new optical, electrical, and magnetic properties in quantum dots (QDs). While dopants can be introduced into QDs through many synthetic methods, the control of dopant location and host-dopant (H-D) coupling through directional dopant movement is still largely unexplored. In this work, we have studied dopant behaviors in Mn:CdS/ZnS core/shell QDs and found that dopant transport behavior is very sensitive to the temperature and microenvironments within the QDs. The migration of Mn toward the alloyed interface of the core/shell QDs, below a temperature boundary (Tb) at ∼200 °C, weakens the H-D interactions. At temperatures higher than the Tb, however, dopant ejection and global alloying of CdS/ZnS QDs can occur, leading to stronger H-D coupling. The behavior of incorporated dopants inside QDs is fundamentally important for understanding doping mechanisms and the host-dopant interaction-dependent properties of doped nanomaterials.

2.
Front Chem ; 7: 145, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949473

RESUMEN

Dynamic materials have been given an increased amount of attention in recent years with an expectation that they may exhibit properties on demand. Especially, the combination of fluorescent quantum dots (QDs) and light-responsive organic switches can generate novel photo-switchable materials for diverse applications. In this work, a highly reversible dynamic hybrid system is established by mixing dual-color emitting Mn-doped CdS-ZnS quantum dots (QDs) with photo-switchable diarylethene molecules. We show that the diarylethene 1,2-bis(5-(3,5-bis(trifluoromethyl)phenyl)-2-methylthiophen-3-yl)cyclopent-1-ene (switch molecule 1) performs fabulous photo-switching property (between its open, 1o and closed, 1c forms), and high fatigue resistance in this hybrid system. The emission color switching between blue and pink of the system can be induced mainly by selective quenching/recovering of the Mn- photoluminescence (PL) of the QDs due to the switchable absorbance of the molecule 1. Mechanistic studies show that quenching of QD emission following UV illumination was caused by both Förster resonance energy transfer (FRET) and reabsorption by surrounding 1c molecules in the case of the Mn-PL, and solely by reabsorption in the case of badngap- (BG-)PL. This photo-switchable system could be potentially used in applications ranging from self-erasing paper to super-resolution fluorescence imaging.

3.
ACS Nano ; 11(12): 12591-12600, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29172442

RESUMEN

Transition metal ion doped one-dimensional (1-D) nanocrystals (NCs) have advantages of larger absorption cross sections and polarized absorption and emissions in comparison to 0-D NCs. However, direct synthesis of doped 1-D nanorods (NRs) or nanowires (NWs) has proven challenging. In this study, we report the synthesis of 1-D Mn-doped ZnSe NWs using a colloidal hot-injection method and shell passivation for core/shell NWs with tunable optical properties. Experimental results show optical properties of the NWs are controlled by the composition and thickness of the shell lattice. It was found that both the host-Mn energy transfer and Mn-Mn coupling are strongly dependent on the type of alloy at the interface of doped core/shell NWs. For Mn-doped type I ZnSe/ZnS core/shell NWs, the ZnS shell passivation can enhance florescence quantum yield with little effect on the location of the incorporated Mn dopant due to the identical cationic Zn2+ site available for Mn dopants throughout the core/shell NWs. However, for Mn-doped quasi type II ZnSe/CdS NWs and ZnSe/CdS/ZnS core/shell NWs, the cation alloying (Zn1-xCdxS(e)) can lead to metal dopant migration from the core to the alloyed interface and tunable host-dopant energy transfer efficiencies and Mn-Mn coupling. As a result, a tunable dual-band emission can be achieved for the doped NWs with the cation-alloyed interface. The interfacial alloying mediated energy transfer and Mn-Mn coupling provides a method to control the optical properties of the doped 1-D core/shell NWs.


Asunto(s)
Manganeso/química , Nanocables/química , Compuestos de Selenio/química , Compuestos de Zinc/química , Transferencia de Energía , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA