Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 20(1): 352, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907835

RESUMEN

BACKGROUND: Coronaviruses usually cause mild respiratory disease in humans but as seen recently, some human coronaviruses can cause more severe diseases, such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the global spread of which has resulted in the ongoing coronavirus pandemic. RESULTS: In this study we analyzed the potential of using iron oxide nanoparticles (IONPs) coated with biocompatible molecules like dimercaptosuccinic acid (DMSA), 3-aminopropyl triethoxysilane (APS) or carboxydextran (FeraSpin™ R), as well as iron oxyhydroxide nanoparticles (IOHNPs) coated with sucrose (Venofer®), or iron salts (ferric ammonium citrate -FAC), to treat and/or prevent SARS-CoV-2 infection. At non-cytotoxic doses, IONPs and IOHNPs impaired virus replication and transcription, and the production of infectious viruses in vitro, either when the cells were treated prior to or after infection, although with different efficiencies. Moreover, our data suggest that SARS-CoV-2 infection affects the expression of genes involved in cellular iron metabolism. Furthermore, the treatment of cells with IONPs and IOHNPs affects oxidative stress and iron metabolism to different extents, likely influencing virus replication and production. Interestingly, some of the nanoparticles used in this work have already been approved for their use in humans as anti-anemic treatments, such as the IOHNP Venofer®, and as contrast agents for magnetic resonance imaging in small animals like mice, such as the FeraSpin™ R IONP. CONCLUSIONS: Therefore, our results suggest that IONPs and IOHNPs may be repurposed to be used as prophylactic or therapeutic treatments in order to combat SARS-CoV-2 infection.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Nanopartículas , Animales , Células Cultivadas , Compuestos Férricos , Sacarato de Óxido Férrico , Humanos , Hierro , Ratones , SARS-CoV-2
2.
Biomaterials ; 304: 122409, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052135

RESUMEN

There is increasing interest in modulating the redox homeostasis of tumors since high levels of reactive oxygen species (ROS) make them more vulnerable to changes in these species. Nanomedicine offers promise in this context as such applications may provoke biological responses that induce ROS production. Indeed, iron oxide nanoparticles (IONPs) can induce ROS accumulation through the so-called Fenton reaction of iron, further augmenting the ROS in tumors and overloading the antioxidant system beyond its capacity, thereby driving oxidative stress to a level that is incompatible with cell survival. Here, three different coatings for IONPs were compared to assess their intrinsic capacity to induce ROS production in cells. Of these coatings, dimercaptosuccinic acid-coated IONPs (DMSA-NPs) provoked the strongest ROS production, which was associated with the ability to reprogram the metabolism of cancer cells. This latter phenomenon involved shutting-down oxidative phosphorylation (OXPHOS), shifting mitochondrial morphology towards a more elongated phenotype, reducing the total mitochondrial mass and ultimately, blocking cell proliferation by inducing G0/G1 cell cycle arrest. Consequently, the data obtained highlights the importance of studying the chemical properties of IONPs, presenting DMSA-NPs as a novel tool to induce oxidative stress in cancer cells and alter their cell fate.


Asunto(s)
Compuestos Férricos , Neoplasias , Humanos , Especies Reactivas de Oxígeno/metabolismo , Compuestos Férricos/química , Estrés Oxidativo , División Celular , Succímero , Nanopartículas Magnéticas de Óxido de Hierro
3.
ACS Appl Mater Interfaces ; 15(30): 35906-35926, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37478159

RESUMEN

Upon contact with biological fluids like serum, a protein corona (PC) complex forms on iron oxide nanoparticles (IONPs) in physiological environments and the proteins it contains influence how IONPs act in biological systems. Although the biological identity of PC-IONP complexes has often been studied in vitro and in vivo, there have been inconsistent results due to the differences in the animal of origin, the type of biological fluid, and the physicochemical properties of the IONPs. Here, we identified differences in the PC composition when it was derived from the sera of three species (bovine, murine, or human) and deposited on IONPs with similar core diameters but with different coatings [dimercaptosuccinic acid (DMSA), dextran (DEX), or 3-aminopropyl triethoxysilane (APS)], and we assessed how these differences influenced their effects on macrophages. We performed a comparative proteomic analysis to identify common proteins from the three sera that adsorb to each IONP coating and the 10 most strongly represented proteins in PCs. We demonstrated that the PC composition is dependent on the origin of the serum rather than the nature of the coating. The PC composition critically affects the interaction of IONPs with macrophages in self- or non-self identity models, influencing the activation and polarization of macrophages. However, such effects were more consistent for DMSA-IONPs. As such, a self biological identity of IONPs promotes the activation and M2 polarization of murine macrophages, while a non-self biological identity favors M1 polarization, producing larger quantities of ROS. In a human context, we observed the opposite effect, whereby a self biological identity of DMSA-IONPs promotes a mixed M1/M2 polarization with an increase in ROS production. Conversely, a non-self biological identity of IONPs provides nanoparticles with a stealthy character as no clear effects on human macrophages were evident. Thus, the biological identity of IONPs profoundly affects their interaction with macrophages, ultimately defining their biological impact on the immune system.


Asunto(s)
Nanopartículas , Proteómica , Ratones , Animales , Bovinos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Macrófagos/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro , Compuestos Férricos/química
4.
ACS Appl Mater Interfaces ; 13(7): 7924-7944, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33587585

RESUMEN

A critical issue in nanomedicine is to understand the complex dynamics that dictate the interactions of nanoparticles (NPs) with their biological milieu. The most exposed part of a nanoparticle is its surface coating, which comes into contact with the biological medium and adsorbs proteins, forming what is known as a protein corona (PC). It is assumed that this PC mainly dictates the nanoparticle-cell interactions. As such, we set out to analyze how different coatings on iron oxide nanoparticles (MNPs) affect the composition of the PC that forms on top of them, and how these newly formed coronas influence the uptake of MNPs by macrophages and tumor cells, their subcellular location upon internalization, and their intracellular degradation. We found that different superficial charges of the coatings did not affect the PC composition, with an enrichment in proteins with affinity for divalent ions regardless of the type of coating. The iron oxide core of the MNP might become exposed to the biological medium, influencing the proteins that constitute the PCs. The presence of enzymes with hydrolase activity in the PC could explain the degradation of the coatings when they come into contact with the biological media. In terms of MNP internalization by cells, coatings mainly determine the endocytic pathways used, especially in terms of receptor-mediated endocytosis. However, the increase in hydrodynamic size provoked by the formation of the associated corona drives uptake mechanisms like macropinocytosis. Once inside the cells, the PC protected the NPs in their intracellular transit to lysosomes, where they were fully degraded. This understanding of how coatings and PCs influence different cellular processes will help design improved NPs for biomedical applications, taking into account the influence of the coating and corona on the biology of the NPs.


Asunto(s)
Nanopartículas Magnéticas de Óxido de Hierro/química , Corona de Proteínas/química , Adsorción , Animales , Células Cultivadas , Ratones , Tamaño de la Partícula , Proteómica , Células RAW 264.7 , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA