Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Immunol ; 8: 20, 2007 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-17850649

RESUMEN

BACKGROUND: The challenge of gene expression studies is to reliably quantify levels of transcripts, but this is hindered by a number of factors including sample availability, handling and storage. The PAXgene Blood RNA System includes a stabilizing additive in a plastic evacuated tube, but requires 2.5 mL blood, which makes routine implementation impractical for paediatric use. The aim of this study was to modify the PAXgene Blood RNA System kit protocol for application to small, sick children, without compromising RNA integrity, and subsequently to perform quantitative analysis of ICAM and interleukin-6 gene expression.Aliquots of 0.86 mL PAXgene reagent were put into microtubes and 0.3 mL whole blood added to maintain the same recommended proportions as in the PAXgene evacuated tube system. RNA quality was assessed using the Agilent BioAnalyser 2100 and an in-house TaqMan assay which measures GAPDH transcript integrity by determining 3' to 5' ratios. qPCR analysis was performed on an additional panel of 7 housekeeping genes. Three reference genes (HPRT1, YWHAZ and GAPDH) were identified using the GeNORM algorithm, which were subsequently used to normalising target gene expression levels. ICAM-1 and IL-6 gene expression were measured in 87 Malawian children with invasive pneumococcal disease. RESULTS: Total RNA yield was between 1,114 and 2,950 ng and the BioAnalyser 2100 demonstrated discernible 18s and 28s bands. The cycle threshold values obtained for the seven housekeeping genes were between 15 and 30 and showed good consistency. Median relative ICAM and IL-6 gene expression were significantly reduced in non-survivors compared to survivors (ICAM: 3.56 vs 4.41, p = 0.04, and IL-6: 2.16 vs 6.73, p = 0.02). CONCLUSION: We have successfully modified the PAXgene blood collection system for use in small children and demonstrated preservation of RNA integrity and successful quantitative real-time PCR analysis.


Asunto(s)
Recolección de Muestras de Sangre/métodos , Reacción en Cadena de la Polimerasa/métodos , ARN/sangre , Juego de Reactivos para Diagnóstico , Adolescente , Estudios de Casos y Controles , Niño , Femenino , Regulación de la Expresión Génica , Humanos , Lactante , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Infecciones Neumocócicas/sangre , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
ACS Med Chem Lett ; 6(7): 798-803, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26191369

RESUMEN

The DDR1 and DDR2 receptor tyrosine kinases are activated by extracellular collagen and have been implicated in a number of human diseases including cancer. We performed a fragment-based screen against DDR1 and identified fragments that bound either at the hinge or in the back pocket associated with the DFG-out conformation of the kinase. Modeling based on crystal structures of potent kinase inhibitors facilitated the "back-to-front" design of potent DDR1/2 inhibitors that incorporated one of the DFG-out fragments. Further optimization led to low nanomolar, orally bioavailable inhibitors that were selective for DDR1 and DDR2. The inhibitors were shown to potently inhibit DDR2 activity in cells but in contrast to unselective inhibitors such as dasatinib, they did not inhibit proliferation of mutant DDR2 lung SCC cell lines.

3.
ACS Med Chem Lett ; 6(1): 25-30, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25589925

RESUMEN

Fragment-based drug design was successfully applied to maternal embryonic leucine zipper kinase (MELK). A low affinity (160 µM) fragment hit was identified, which bound to the hinge region with an atypical binding mode, and this was optimized using structure-based design into a low-nanomolar and cell-penetrant inhibitor, with a good selectivity profile, suitable for use as a chemical probe for elucidation of MELK biology.

4.
ACS Med Chem Lett ; 6(1): 31-6, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25589926

RESUMEN

A novel Type II kinase inhibitor chemotype has been identified for maternal embryonic leucine zipper kinase (MELK) using structure-based ligand design. The strategy involved structural characterization of an induced DFG-out pocket by protein-ligand X-ray crystallography and incorporation of a slender linkage capable of bypassing a large gate-keeper residue, thus enabling design of molecules accessing both hinge and induced pocket regions. Optimization of an initial hit led to the identification of a low-nanomolar, cell-penetrant Type II inhibitor suitable for use as a chemical probe for MELK.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA