Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mediators Inflamm ; 2023: 9018470, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731843

RESUMEN

Skeletal muscle of patients with sporadic inclusion body myositis (sIBM) presents with inflammation, including upregulation of inflammatory cytokines such as interferon γ (IFNγ). Non-inflammatory features are also observed, like the sarcoplasmic accumulation of proteins including TDP-43 and p62. This study aimed to investigate the effect of IFNγ and interleukin 1-ß (IL-1ß) on TDP-43 and p62 aggregation in vitro. Primary human myotubes were treated with IL-1ß (20 ng/mL) and IFNγ (750 ng/mL) separately or combined for 48 hr. Sarcoplasmic TDP-43 aggregates and p62 puncta were assessed using image analysis for size, frequency, and colocalization with each other. Total protein expression of TDP-43, p62 and LC3 was assessed using western blotting. The subcellular localization of TDP-43 was also analyzed using image analysis. Combined IL-1ß and IFNγ treatment increased puncta size of p62 compared to control (0.49 ± 0.13 µm2 versus 0.28 ± 0.06 µm2), without affecting puncta frequency or p62 expression but with an increased LC3II/LC3I ratio, suggesting autophagic alterations. IL-1ß or IFNγ did not alter p62 puncta size or frequency, suggesting a combined insult of multiple inflammatory mediators is necessary to cause p62 alterations. IL-1ß increased p62 protein expression in an autophagy-independent manner. None of the cytokine treatments affected TDP-43 protein expression, size, or frequency of TDP-43 aggregates or localization, suggesting IL-1ß and IFNγ may influence TDP-43 processing in human skeletal muscle cells. TDP-43 was localized to the sarcoplasm under control conditions, suggesting this may not be a pathological feature. Overall, sIBM-like TDP-43/p62 features were not triggered by IL-1ß and/or IFNγ.


Asunto(s)
Citocinas , Interferón gamma , Humanos , Interferón gamma/farmacología , Fibras Musculares Esqueléticas , Músculo Esquelético , Proteínas de Unión al ADN
2.
Anal Biochem ; 654: 114793, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35750251

RESUMEN

N-acetyl-seryl-aspartyl-lysyl proline (Ac-SDKP) is a tetrapeptide possessing anti-fibrotic, angiogenic, anti-inflammatory, anti-apoptotic, and immunomodulatory properties. Currently, the main method to quantify the peptide is liquid chromatography-tandem mass spectrometry (LC-MS/MS) and enzyme-linked immunosorbent assay (ELISA), both of which are labour intensive and require expensive equipment and consumables. Furthermore, these techniques are generally utilised to detect very low or trace concentrations, such as in biological samples. The use of high concentrations of analyte might overload the extraction column or the separation column in LC-MS/MS or the ELISA plates, so the response could be a non-linear relationship at high analyte concentrations. Thus, they are not ideal for formulation development where detection of dose-equivalent concentrations is typically required. Therefore, a cost-effective, simple, and accurate quantification method for the peptide at a higher concentration needs to be developed. In this study, a simple and novel HPLC-UV method is proposed and validated using an Analytical Quality by Design (AQbD) approach. The method is first screened and optimised using chromatographic responses including capacity factor, resolution, tailing factor, and theoretical plate counts, fulfilling the International Council for Harmonisation (ICH) Q2 (R1) guidelines. The resultant optimised chromatography conditions utilised 10 mM phosphate buffer at pH 2.5 and acetonitrile as mobile phases, starting at 3% (v/v) acetonitrile and 97% (v/v) buffer and increasing to 9.7% (v/v) acetonitrile and 90.3% (v/v) buffer over 15 min at a flow rate of 1 mL/min at the column temperature of 25 °C. The injection volume is set at 10 µL and the VWD detector wavelength is 220 nm. The method established is suitable for detecting the peptide at a relatively high concentration, with a quantifiable range from 7.8 µg/mL to 2.0 mg/mL. In addition, the use of a relatively simple HPLC-UV approach could significantly reduce costs and allow easier access to quantify the peptide concentration. A limitation of this method is lower sensitivity compared with using LC-MS/MS and ELISA methods but running costs are lower and the methodology is simpler. The method is capable to quantify the peptide in various tested matrix solutions, with successful quantitation of the peptide in samples obtained from in vitro drug release study in PBS and from a chitosan-TPP nanogels formulation. Therefore, the method developed here offers a complementary approach to the existing quantification methods, quantifying this peptide at increased concentrations in simple to intermediately complex matrix solutions, such as HBSS, DMEM and FluoroBrite cell culture media.


Asunto(s)
Oligopéptidos , Espectrometría de Masas en Tándem , Acetonitrilos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Oligopéptidos/química , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
3.
Mol Pharm ; 19(2): 602-615, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35061948

RESUMEN

The physical properties of nanoparticles may affect the uptake mechanism, biodistribution, stability, and other physicochemical properties of drug delivery systems. This study aimed to first develop a model exploring the factors controlling the nanogel physical properties using a single drug (propranolol), followed by an evaluation of whether these models can be applied more generally to a range of drugs. Size, polydispersity, ζ potential, and encapsulation efficiency were investigated using a design of experiment (DOE) approach to optimize formulations by systematically identifying the effects of, and interactions between, parameters associated with nanogel formulation and drug loading. Three formulation factors were selected, namely, chitosan concentration, the ratio between the chitosan and cross-linker─sodium triphosphate─and the ratio between the chitosan and drug. The results indicate that the DOE approach can be used not only to model but also to predict the size and polydispersity index (PDI). To explore the application of these prediction models with other drugs and to identify the relationship between the drug structure and nanogel properties, nanogels loaded with 12 structurally distinct drugs and 6 structurally similar drugs were fabricated at the optimal condition for propranolol in the model. The measured size, PDI, and ζ potential of the nanogels could not be modeled using distinct DOE parameters for dissimilar drugs, indicating that each drug requires a separate analysis. Nevertheless, for drugs with structural similarities, various linear and nonlinear trends were observed in the size, PDI, and ζ potential of nanogels against selected molecular descriptors, indicating that there are indeed relationships between the drug molecular structure and the performance outcomes, which may be modeled and predicted using the DOE approach. In conclusion, the study demonstrates that DOE models can be applied to model and predict the influence of formulation and drug loading on key performance parameters. While distinct models are required for structurally unrelated drugs, it was possible to establish correlations for the drug series investigated, which were based on polarity, hydrophobicity, and polarizability, thereby elucidating the importance of the interactions between the drug and the nanogels based on the nanogel properties and thus deepening the understanding of the drug-loading mechanisms in nanogels.


Asunto(s)
Quitosano , Quitosano/química , Sistemas de Liberación de Medicamentos , Nanogeles , Preparaciones Farmacéuticas , Distribución Tisular
4.
Org Biomol Chem ; 18(12): 2215-2218, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32150198

RESUMEN

Due to their homogeneity, tuneable properties, low cost and ease of manufacture, thermally induced phase separation (TIPS) polymeric microparticles are emerging as an exciting class of injectable device for the treatment of damaged tissue or complex diseases, such as cancer. However, relatively little work has explored enhancing surface functionalisation of this system. Herein, we present the functionalisation of TIPS microparticles with both small molecules and an antibody fragment of Herceptin™, via a heterobifunctional pyridazinedione linker capable of participating in SPAAC "click" chemistry, and compare it to the traditional method of preparing active-targeted microparticle systems, that is, physisorption of antibodies to the microparticle surface. Antigen-binding assays demonstrated that functionalisation of microparticles with Herceptin Fab, via a pyridazinedione linker, provided an enhanced avidity to HER2+ when compared to traditional physisorption methods.

5.
Adv Sci (Weinh) ; : e2404355, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900068

RESUMEN

Cell therapy is a potential novel treatment for cardiac regeneration and numerous studies have attempted to transplant cells to regenerate the myocardium lost during myocardial infarction. To date, only minimal improvements to cardiac function have been reported. This is likely to be the result of low cell retention and survival following transplantation. This study aimed to improve the delivery and engraftment of viable cells by using an injectable microcarrier that provides an implantable, biodegradable substrate for attachment and growth of cardiomyocytes derived from induced pluripotent stem cells (iPSC). We describe the fabrication and characterisation of Thermally Induced Phase Separation (TIPS) microcarriers and their surface modification to enable iPSC-derived cardiomyocyte attachment in xeno-free conditions is described. The selected formulation resulted in iPSC attachment, expansion, and retention of pluripotent phenotype. Differentiation of iPSC into cardiomyocytes on the microcarriers is investigated in comparison with culture on 2D tissue culture plastic surfaces. Microcarrier culture is shown to support culture of a mature cardiomyocyte phenotype, be compatible with injectable delivery, and reduce anoikis. The findings from this study demonstrate that TIPS microcarriers provide a supporting matrix for culturing iPSC and iPSC-derived cardiomyocytes in vitro and are suitable as an injectable cell-substrate for cardiac regeneration.

6.
Adv Healthc Mater ; : e2303588, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678393

RESUMEN

Targeted delivery and retention are essential requirements for implantable tissue-engineered products. Non-invasive imaging methods that can confirm location, retention, and biodistribution of transplanted cells attached to implanted tissue engineering scaffolds will be invaluable for the optimization and enhancement of regenerative therapies. To address this need, an injectable tissue engineering scaffold consisting of highly porous microspheres compatible with transplantation of cells is modified to contain the computed tomography (CT) contrast agent barium sulphate (BaSO4). The trackable microspheres show high x-ray absorption, with contrast permitting whole-body tracking. The microspheres are cellularized with GFP+ Luciferase+ mesenchymal stem cells and show in vitro biocompatibility. In vivo, cellularized BaSO4-loaded microspheres are delivered into the hindlimb of mice where they remain viable for 14 days. Co-registration of 3D-bioluminescent imaging and µCT reconstructions enable the assessment of scaffold material and cell co-localization. The trackable microspheres are also compatible with minimally-invasive delivery by ultrasound-guided transthoracic intramyocardial injections in rats. These findings suggest that BaSO4-loaded microspheres can be used as a novel tool for optimizing delivery techniques and tracking persistence and distribution of implanted scaffold materials. Additionally, the microspheres can be cellularized and have the potential to be developed into an injectable tissue-engineered combination product for cardiac regeneration.

7.
Pharmaceutics ; 16(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794324

RESUMEN

Chitosan-triphosphate (TPP) nanogels are widely studied drug delivery carrier systems, typically prepared via a simple mixing process. However, the effects of the processing factors on nanogel production have not been extensively explored, despite the importance of understanding and standardising such factors to allow upscaling and commercial usage. This study aims to systematically evaluate the effects of various fabrication and processing factors on the properties of nanogels using a Design of Experiment approach. Hydrodynamic size, polydispersity index (PDI), zeta potential, and encapsulation efficiency were determined as the dependent factors. The temperature, stirring rate, chitosan grade, crosslinker choice, and the interaction term between temperature and chitosan grade were found to have a significant effect on the particle size, whereas the effect of temperature and the addition rate of crosslinker on the PDI was also noteworthy. Moreover, the addition rate of the crosslinker and the volume of the reaction vessel were found to impact the encapsulation efficiency. The zeta potential of the nanogels was found to be governed by the chitosan grade. The optimal fabrication conditions for the development of medium molecular weight chitosan and TPP nanogels included the following: the addition rate for TPP solution was set at 2 mL/min, while the solution was then stirred at a temperature of 50 °C and a stirring speed of 600 rpm. The volume of the glass vial used was 28 mL, while the stirrer size was 20 mm. The second aim of the study was to evaluate the potential for scaling up the nanogels. Size and PDI were found to increase from 128 nm to 151 nm and from 0.232 to 0.267, respectively, when the volume of the reaction mixture was increased from 4 to 20 mL and other processing factors were kept unchanged. These results indicate that caution is required when scaling up as the nanogel properties may be significantly altered with an increasing production scale.

8.
J Biomed Mater Res A ; 112(7): 1070-1082, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38400701

RESUMEN

Combinations of different biomaterials with their own advantages as well as functionalization with other components have long been implemented in tissue engineering to improve the performance of the overall material. Biomaterials, particularly hydrogel platforms, have shown great potential for delivering compounds such as drugs, growth factors, and neurotrophic factors, as well as cells, in neural tissue engineering applications. In central the nervous system, astrocyte reactivity and glial scar formation are significant and complex challenges to tackle for neural and functional recovery. GelMA hydrogel-based tissue constructs have been developed in this study and combined with two different formulations of phosphate glass fibers (PGFs) (with Fe3+ or Ti2+ oxide) to impose physical and mechanical cues for modulating astrocyte cell behavior. This study was also aimed at investigating the effects of lithium-loaded GelMA-PGFs hydrogels in alleviating astrocyte reactivity and glial scar formation offering novel perspectives for neural tissue engineering applications. The rationale behind introducing lithium is driven by its long-proven therapeutic benefits in mental disorders, and neuroprotective and pronounced anti-inflammatory properties. The optimal concentrations of lithium and LPS were determined in vitro on primary rat astrocytes. Furthermore, qPCR was conducted for gene expression analysis of GFAP and IL-6 markers on primary astrocytes cultured 3D into GelMA and GelMA-PGFs hydrogels with and without lithium and in vitro stimulated with LPS for astrocyte reactivity. The results suggest that the combination of bioactive phosphate-based glass fibers and lithium loading into GelMA structures may impact GFAP expression and early IL-6 expression. Furthermore, GelMA-PGFs (Fe) constructs have shown improved performance in modulating glial scarring over GFAP regulation.


Asunto(s)
Astrocitos , Vidrio , Litio , Fosfatos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Animales , Vidrio/química , Fosfatos/química , Fosfatos/farmacología , Litio/farmacología , Litio/química , Ratas , Hidrogeles/química , Hidrogeles/farmacología , Andamios del Tejido/química , Células Cultivadas , Proteína Ácida Fibrilar de la Glía/metabolismo
9.
Pharmaceutics ; 15(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36839984

RESUMEN

In recent years, extracellular vesicles (EVs) have emerged as promising biomarkers, cell-free therapeutic agents, and drug delivery carriers. Despite their great clinical potential, poor yield and unscalable production of EVs remain significant challenges. When using 3D culture methods, such as scaffolds and bioreactors, large numbers of cells can be expanded and the cell environment can be manipulated to control the cell phenotype. This has been employed to successfully increase the production of EVs as well as to enhance their therapeutic effects. The physiological relevance of 3D cultures, such as spheroids, has also provided a strategy for understanding the role of EVs in the pathogenesis of several diseases and to evaluate their role as tools to deliver drugs. Additionally, 3D culture methods can encapsulate EVs to achieve more sustained therapeutic effects as well as prevent premature clearance of EVs to enable more localised delivery and concentrated exosome dosage. This review highlights the opportunities and drawbacks of different 3D culture methods and their use in EV research.

10.
Sci Rep ; 13(1): 15935, 2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741931

RESUMEN

Sporadic inclusion body myositis (sIBM) is an idiopathic inflammatory myopathy with invasion of CD8 T cells in muscle and aggregation of proteins in the sarcoplasm. TDP-43 and p62 are two proteins that aggregate in affected muscle, and have been suggested as specific markers for sIBM over other inflammatory myopathies. TDP-43 is also mislocalised from the nucleus to the sarcoplasm in sIBM. It is not clear if inflammation precedes protein aggregation in sIBM. This study investigated if exposure to cytotoxic inflammatory cells caused TDP-43 and p62 aggregation or TDP-43 mislocalisation in cultured myotubes. TALL-104 coculture was highly cytotoxic to myotubes after 24 h. Secretion of IFNγ and TNFα were higher in cocultures compared to monocultured TALL-104 cells, indicating activation. TALL-104 cells attached to and infiltrated myotubes. There was no effect of TALL-104 coculture on TDP-43 or p62 sarcoplasmic aggregate size or frequency. However, there was decreased localisation of TDP-43 to the nucleus with TALL-104 coculture compared to control. In an in vitro setting, cytotoxic immune cells did not cause TDP-43 or p62 sarcoplasmic aggregation, suggesting cellular cytotoxicity may not trigger aggregation of these proteins. However TALL-104 coculture influenced TDP-43 localisation, suggesting cytotoxic immune cells may contribute to TDP-43 localisation shifts which is observed in sIBM.


Asunto(s)
Citotoxicidad Inmunológica , Miositis por Cuerpos de Inclusión , Linfocitos T Citotóxicos , Humanos , Citoplasma , Proteínas de Unión al ADN , Linfocitos , Fibras Musculares Esqueléticas , Miositis por Cuerpos de Inclusión/inmunología , Linfocitos T Citotóxicos/inmunología
11.
J Tissue Eng ; 14: 20417314221139794, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36949843

RESUMEN

Skeletal muscle-derived cells (SMDC) hold tremendous potential for replenishing dysfunctional muscle lost due to disease or trauma. Current therapeutic usage of SMDC relies on harvesting autologous cells from muscle biopsies that are subsequently expanded in vitro before re-implantation into the patient. Heterogeneity can arise from multiple factors including quality of the starting biopsy, age and comorbidity affecting the processed SMDC. Quality attributes intended for clinical use often focus on minimum levels of myogenic cell marker expression. Such approaches do not evaluate the likelihood of SMDC to differentiate and form myofibres when implanted in vivo, which ultimately determines the likelihood of muscle regeneration. Predicting the therapeutic potency of SMDC in vitro prior to implantation is key to developing successful therapeutics in regenerative medicine and reducing implementation costs. Here, we report on the development of a novel SMDC profiling tool to examine populations of cells in vitro derived from different donors. We developed an image-based pipeline to quantify morphological features and extracted cell shape descriptors. We investigated whether these could predict heterogeneity in the formation of myotubes and correlate with the myogenic fusion index. Several of the early cell shape characteristics were found to negatively correlate with the fusion index. These included total area occupied by cells, area shape, bounding box area, compactness, equivalent diameter, minimum ferret diameter, minor axis length and perimeter of SMDC at 24 h after initiating culture. The information extracted with our approach indicates live cell imaging can detect a range of cell phenotypes based on cell-shape alone and preserving cell integrity could be used to predict propensity to form myotubes in vitro and functional tissue in vivo.

12.
Tissue Eng Part C Methods ; 29(12): 583-595, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37842845

RESUMEN

Fecal incontinence, although not life-threatening, has a high impact on the economy and patient quality of life. So far, available treatments are based on both surgical and nonsurgical approaches. These can range from changes in diet, to bowel training, or sacral nerve stimulation, but none of which provides a long-term solution. New regenerative medicine-based therapies are emerging, which aim at regenerating the sphincter muscle and restoring continence. Usually, these consist of the administration of a suspension of expanded skeletal-derived muscle cells (SkMDCs) to the damaged site. However, this strategy often results in a reduced cell viability due to the need for cell harvesting from the expansion platform, as well as the non-native use of a cell suspension to deliver the anchorage-dependent cells. In this study, we propose the proof-of-concept for the bioprocessing of a new cell delivery method for the treatment of fecal incontinence, obtained by a scalable two-step process. First, patient-isolated SkMDCs were expanded using planar static culture systems. Second, by using a single-use PBS-MINI Vertical-Wheel® bioreactor, the expanded SkMDCs were combined with biocompatible and biodegradable (i.e., directly implantable) poly(lactic-co-glycolic acid) microcarriers prepared by thermally induced phase separation. This process allowed for up to 80% efficiency of SkMDCs to attach to the microcarriers. Importantly, SkMDCs were viable during all the process and maintained their myogenic features (e.g., expression of the CD56 marker) after adhesion and culture on the microcarriers. When SkMDC-containing microcarriers were placed on a culture dish, cells were able to migrate from the microcarriers onto the culture surface and differentiate into multinucleated myotubes, which highlights their potential to regenerate the damaged sphincter muscle after administration into the patient. Overall, this study proposes an innovative method to attach SkMDCs to biodegradable microcarriers, which can provide a new treatment for fecal incontinence.


Asunto(s)
Técnicas de Cultivo de Célula , Incontinencia Fecal , Humanos , Técnicas de Cultivo de Célula/métodos , Calidad de Vida , Reactores Biológicos , Músculos
13.
Trends Cardiovasc Med ; 32(4): 206-218, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33892101

RESUMEN

Drug deposition into the intrapericardial space is favourable for achieving localised effects and targeted cardiac delivery owing to its proximity to the myocardium as well as facilitating optimised pharmacokinetic profiles and a reduction in systemic side effects. Access to the pericardium requires invasive procedures but the risks associated with this have been reduced with technological advances, such as combining transatrial and subxiphoid access with different guidance methods. A variety of introducer devices, ranging from needles to loop-catheters, have also been developed and validated in pre-clinical studies investigating intrapericardial delivery of therapeutic agents. Access techniques are generally well-tolerated, self-limiting and safe, although some rare complications associated with certain approaches have been reported. This review covers these access techniques and how they have been applied to the delivery of drugs, cells, and biologicals, demonstrating the potential of intrapericardial delivery for treatments in cardiac arrhythmia, vascular damage, and myocardial infarction.


Asunto(s)
Cardiopatías , Cardiopatías/diagnóstico , Cardiopatías/terapia , Humanos , Miocardio , Pericardio
14.
J Biomed Mater Res A ; 109(11): 2212-2224, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33960663

RESUMEN

Glial cell alignment in tissue engineered constructs is essential for achieving functional outcomes in neural recovery. While gelatin methacrylate (GelMA) hydrogel offers superior biocompatibility along with permissive structure and tailorable mechanical properties, phosphate glass fibers (PGFs) can provide physical cues for directionality of neural growth. Aligned PGFs were fabricated by a melt quenching and fiber drawing method and utilized with synthesized GelMA hydrogel. The mechanical properties of GelMA and biocompatibility of the GelMA-PGFs composite were investigated in vitro using rat glial cells. GelMA with 86% methacrylation degree were photo-crosslinked using 0.1%wt photo-initiator (PI). Photocrosslinking under UV exposure for 60 s was used to produce hydrogels (GelMA-60). PGFs were introduced into the GelMA before crosslinking. Storage modulus and loss modulus of GelMA-60 was 24.73 ± 2.52 and 1.08 ± 0.23 kN/m2 , respectively. Increased cell alignment was observed in GelMA-PGFs compared with GelMA hydrogel alone. These findings suggest GelMA-PGFs can provide glial cells with physical cues necessary to achieve cell alignment. This approach could further be used to achieve glial cell alignment in bioengineered constructs designed to bridge damaged nerve tissue.


Asunto(s)
Gelatina/química , Vidrio/química , Metacrilatos/química , Neuroglía/metabolismo , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Línea Celular , Ratones , Ratas
15.
Adv Ther (Weinh) ; 4(2): 2000179, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34527807

RESUMEN

Recurrence of prostate cancer after radical prostatectomy is a consequence of incomplete tumor resection. Systemic chemotherapy after surgery is associated with significant toxicity. Improved delivery methods for toxic drugs capable of targeting positive resection margins can reduce tumor recurrence and avoid their known toxicity. This study evaluates the effectiveness and toxicity of docetaxel (DTX) release from highly porous biodegradable microparticles intended for delivery into the tissue cavity created during radical prostatectomy to target residual tumor cells. The microparticles, composed of poly(dl-lactide-co-glycolide) (PLGA), are processed using thermally induced phase separation (TIPS) and loaded with DTX via antisolvent precipitation. Sustained drug release and effective toxicity in vitro are observed against PC3 human prostate cells. Peritumoral injection in a PC3 xenograft tumor model results in tumor growth inhibition equivalent to that achieved with intravenous delivery of DTX. Unlike intravenous delivery of DTX, implantation of DTX-TIPS microparticles is not accompanied by toxicity or elevated systemic levels of DTX in organ tissues or plasma. DTX-TIPS microparticles provide localized and sustained release of nontoxic therapeutic amounts of DTX. This may offer novel therapeutic strategies for improving management of patients with clinically localized high-risk disease requiring radical prostatectomy and other solid cancers at high risk of positive resection margins.

16.
Adv Biosyst ; 4(7): e2000062, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32511898

RESUMEN

Adipose-derived mesenchymal stromal cells (AdMSC) release numerous soluble factors capable of stimulating angiogenesis. Improved methods for delivering these cells to maximize their potency are now sought that ideally they retain viable cells in the target tissue while promoting the secretion of angiogenic factors. Substrate surface topography is a parameter that can be used to manipulate the behavior of AdMSC but challenges exist with translating this parameter into materials compatible with minimally invasive delivery into tissues for in situ delivery of the angiogenic secretome. The current study investigates three compositions of hierarchically structured, porous biodegradable microcarriers for the culture of AdMSC and the influence of their surface topographies on the angiogenic secretome. All three compositions perform well as cell microcarriers in xeno-free conditions. The attached AdMSC retain their capacity for subsequent trilineage differentiation. The secretome of AdMSC attached to the microcarriers consists of multiple proangiogenic factors, including significantly elevated levels of vascular endothelial growth factor, which stimulates angiogenesis in vitro. The unique properties of hierarchically structured, porous biodegradable microcarriers investigated in this study offer a radically transformative approach for achieving targeted in vivo delivery of AdMSC and enhancing the potency of their proangiogenic activity to induce neovascularization in ischemic tissue.


Asunto(s)
Tejido Adiposo/metabolismo , Inductores de la Angiogénesis/metabolismo , Plásticos Biodegradables/química , Células Inmovilizadas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Línea Celular , Humanos
17.
Artículo en Inglés | MEDLINE | ID: mdl-32775324

RESUMEN

Mesenchymal stromal cells (MSC) hold significant potential for tissue engineering applications. Modular tissue engineering involves the use of cellularized "building blocks" that can be assembled via a bottom-up approach into larger tissue-like constructs. This approach emulates more closely the complexity associated hierarchical tissues compared with conventional top-down tissue engineering strategies. The current study describes the combination of biodegradable porous poly(DL-lactide-co-glycolide) (PLGA) TIPS microcarriers with canine adipose-derived MSC (cAdMSC) for use as implantable conformable building blocks in modular tissue engineering applications. Optimal conditions were identified for the attachment and proliferation of cAdMSC on the surface of the microcarriers. Culture of the cellularized microcarriers for 21 days in transwell insert plates under conditions used to induce either chondrogenic or osteogenic differentiation resulted in self-assembly of solid 3D tissue constructs. The tissue constructs exhibited phenotypic characteristics indicative of successful osteogenic or chondrogenic differentiation, as well as viscoelastic mechanical properties. This strategy paves the way to create in situ tissue engineered constructs via modular tissue engineering for therapeutic applications.

18.
Trends Biotechnol ; 38(10): 1054-1065, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32466966

RESUMEN

The meteoric rise of cancer immunotherapy in the past decade has led to promising treatments for a number of hard-to-treat malignancies. In particular, adoptive T cell therapy has recently reached a major milestone with two products approved by the US FDA. However, the inherent complexity of cell-based immunotherapies means that their manufacturing time, cost, and controllability limit their effectiveness and geographic reach. One way to address these issues may lie in complementing the dominant, reductionistic mentality in modern medicine with complex systems thinking. In this opinion article, we identify key concepts from complexity theory to address manufacturing challenges in cell-based immunotherapies and raise the possibility of a unifying framework upon which future bioprocessing strategies may be designed.


Asunto(s)
Bioingeniería , Inmunoterapia , Neoplasias/terapia , Antineoplásicos , Humanos
19.
ACS Appl Mater Interfaces ; 12(42): 47355-47367, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33027591

RESUMEN

The recent rise of adoptive T cell therapy (ATCT) as a promising cancer immunotherapy has triggered increased interest in therapeutic T cell bioprocessing. T cell activation is a critical processing step and is known to be modulated by physical parameters, such as substrate stiffness. Nevertheless, relatively little is known about how biophysical factors regulate immune cells, such as T cells. Understanding how T cell activation is modulated by physical and biochemical cues may offer novel methods to control cell behavior for therapeutic cell processing. Inspired by T cell mechanosensitivity, we developed a multiwell, reusable, customizable, two-dimensional (2D) polyacrylamide (PA) hydrogel-integrated culture device to study the physicochemical stimulation of Jurkat T cells. Substrate stiffness and ligand density were tuned by concentrations of the hydrogel cross-linker and antibody in the coating solution, respectively. We cultured Jurkat T cells on 2D hydrogels of different stiffnesses that presented surface-immobilized stimulatory antibodies against CD3 and CD28 and demonstrated that Jurkat T cells stimulated by stiff hydrogels (50.6 ± 15.1 kPa) exhibited significantly higher interleukin-2 (IL-2) secretion, but lower proliferation, than those stimulated by softer hydrogels (7.1 ± 0.4 kPa). In addition, we found that increasing anti-CD3 concentration from 10 to 30 µg/mL led to a significant increase in IL-2 secretion from cells stimulated on 7.1 ± 0.4 and 9.3 ± 2.4 kPa gels. Simultaneous tuning of substrate stiffness and stimulatory ligand density showed that the two parameters synergize (two-way ANOVA interaction effect: p < 0.001) to enhance IL-2 secretion. Our results demonstrate the importance of physical parameters in immune cell stimulation and highlight the potential of designing future immunostimulatory biomaterials that are mechanically tailored to balance stimulatory strength and downstream proliferative capacity of therapeutic T cells.


Asunto(s)
Resinas Acrílicas/química , Técnicas de Cultivo de Célula , Hidrogeles/química , Linfocitos T/inmunología , Técnicas de Cultivo de Célula/instrumentación , Células Cultivadas , Humanos , Células Jurkat , Imagen Óptica , Tamaño de la Partícula , Propiedades de Superficie
20.
Adv Healthc Mater ; 9(17): e2000806, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32666663

RESUMEN

Peripheral arterial disease and critical limb ischemia are common symptoms of cardiovascular disease. Vascular surgery is used to create a bypass around occluded blood vessels to improve blood flow to ischemic muscle, thus avoiding the need for amputation. Attempts to vascularize tissues by therapeutic angiogenesis using delivery of exogenous angiogenic agents are underwhelming. A material-based approach that provides an endogenous stimulus capable of promoting angiogenesis and increased tissue perfusion would provide a paradigm shift in treatment options available. It is reported here that microporous biodegradable films produced using thermally induced phase separation provide a localized biophysical stimulus of proangiogenic genes in vivo that is associated with increased blood vessel density and restoration of blood flow to ischemic tissue. These findings show, for the first time, that acellular, nonfunctionalized biodegradable biomaterials can provide an innovative, material-based approach for therapeutic angiogenesis to enhance tissue reperfusion in vivo.


Asunto(s)
Isquemia , Neovascularización Fisiológica , Animales , Materiales Biocompatibles , Modelos Animales de Enfermedad , Miembro Posterior , Isquemia/terapia , Neovascularización Patológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA