Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci Methods ; 312: 169-181, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30500352

RESUMEN

BACKGROUND: Connectivity is a relevant parameter for the information flow within neuronal networks. Network connectivity can be reconstructed from recorded spike train data. Various methods have been developed to estimate connectivity from spike trains. NEW METHOD: In this work, a novel effective connectivity estimation algorithm called Total Spiking Probability Edges (TSPE) is proposed and evaluated. First, a cross-correlation between pairs of spike trains is calculated. Second, to distinguish between excitatory and inhibitory connections, edge filters are applied on the resulting cross-correlogram. RESULTS: TSPE was evaluated with large scale in silico networks and enables almost perfect reconstructions (true positive rate of approx. 99% at a false positive rate of 1% for low density random networks) depending on the network topology and the spike train duration. A distinction between excitatory and inhibitory connections was possible. TSPE is computational effective and takes less than 3 min on a high-performance computer to estimate the connectivity of an 1 h dataset of 1000 spike trains. COMPARISON OF EXISTING METHODS: TSPE was compared with connectivity estimation algorithms like Transfer Entropy based methods, Filtered and Normalized Cross-Correlation Histogram and Normalized Cross-Correlation. In all test cases, TSPE outperformed the compared methods in the connectivity reconstruction accuracy. CONCLUSIONS: The results show that the accuracy of functional connectivity estimation of large scale neuronal networks has been enhanced by TSPE compared to state of the art methods. Furthermore, TSPE enables the classification of excitatory and inhibitory synaptic effects.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Cerebral/fisiología , Modelos Neurológicos , Neuronas/fisiología , Procesamiento de Señales Asistido por Computador , Algoritmos , Simulación por Computador , Humanos , Redes Neurales de la Computación , Vías Nerviosas/fisiología , Probabilidad , Curva ROC
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA