Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Med Chem ; 39(14): 2672-80, 1996 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-8709096

RESUMEN

Two novel classes of pyrrolobenzothiazepinones and pyrrolobenzoxazepinones were investigated as potential anti-AIDS drugs. These compounds were found to inhibit HIV-1 reverse transcriptase (RT) enzyme in vitro and to prevent HIV-1 cytopathogenicity in T4 lymphocytes, without appreciable activity on HIV-2 cytopathic effects, and against HBV as well as calfthymus DNA alpha-polymerase. Their potency is influenced by substituents at position 6 and on the fused aromatic ring. Specifically, small lipophilic substituents at C-6 were preferred, whereas substitutions on the benzo-fused ring were found to be detrimental to activity, with respect to the unsubstituted compounds. Modification of the pie-system at C-6 is well tolerated, although the replacement of the benzo-fused with a [2,3]naphtho-fused ring leads to a less active compound. Maximum potency and specificity is achieved with a phenyl and an ethyl group at position 6 of the pyrrolobenzoxazepinone system. In the enzymatic assay the oxazepinone derivative (+/-)-6-ethyl-6-phenylpyrrolo[2,1-d][1,5] benzoxazepin-7(6H)-one 16e (IC50 = 0.25 microM) was found to be more potent than nevirapine (IC50 = 0.5 microM), tested in the same experimental conditions using rC.dG as a template-primer. In cell culture assay benzoxazepine 16e was active against HIV-1, both wild type and AZT-sensitive, and HIV-1 (IIIB) strains, but not against HIV-2. In enzyme assay although 16e inhibited HIV-1 RT, it was inactive against the nevirapine-resistant recombinant RT Y181C at 50 microM. Molecular modeling studies suggest that these derivatives present a 3D pharmacophoric arrangement similar to that of other non-nucleoside inhibitors such as nevirapine.


Asunto(s)
Antivirales/farmacología , VIH-1/efectos de los fármacos , Oxazepinas/farmacología , ADN Polimerasa Dirigida por ARN/efectos de los fármacos , Inhibidores de la Transcriptasa Inversa/farmacología , Antivirales/síntesis química , Línea Celular , Transcriptasa Inversa del VIH , Humanos , Modelos Moleculares , Estructura Molecular , Oxazepinas/síntesis química , ADN Polimerasa Dirigida por ARN/metabolismo , Inhibidores de la Transcriptasa Inversa/síntesis química , Relación Estructura-Actividad , Tiazepinas/síntesis química , Tiazepinas/farmacología
2.
J Med Chem ; 39(18): 3435-50, 1996 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-8784441

RESUMEN

The "peripheral-type" benzodiazepine receptor (PBR) has been reported to play a role in many biological processes. We have synthesized and tested a novel series of PBR ligands based on a pyrrolobenzoxazepine skeleton, in order to provide new receptor ligands. Several of these new compounds proved to be high affinity and selective ligands for PBR, and benzoxazepines 17f and 17j were found to be the most potent ligands for this receptor to have been identified to date. The SAR and the molecular modeling studies detailed herein delineated a number of structural features required for improving affinity. Some of the ligands were employed as "molecular yardsticks" to probe the spatial dimensions of the lipophilic pockets L1 and L3 in the PBR cleft and to determine the effect of occupation of L1 and L3 with respect to affinity, while other C-7 modified analogues provided information specifically on the hydrogen bonding with a putative receptor site H1. The new pyrrolobenzoxazepines were tested in rat cortex, a tissue expressing high density of mitochondrial PBR, and exhibited IC50 and Ki values in the low nanomolar or subnanomolar range, as measured by the displacement of [3H]PK 11195 binding. A subset of the highest affinity ligands was also found to have high affinities for [3H]PK 11195 and [3H]Ro 5-4864 binding in rat adrenal mitochondria. All the ligands in this subset are stimulators of steroidogenesis having similar potency and extent of stimulation as PK 11195 and Ro 5-4864 of steroidogenesis in the mouse Y-1 adrenocortical cell line.


Asunto(s)
Receptores de GABA-A/metabolismo , Animales , Benzodiazepinonas/metabolismo , Sitios de Unión , Corteza Cerebral/metabolismo , Isoquinolinas/metabolismo , Ligandos , Ratones , Ratas , Ratas Wistar , Relación Estructura-Actividad
3.
J Med Chem ; 39(15): 2922-38, 1996 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-8709127

RESUMEN

The synthesis and cardiovascular characterization of a series of novel pyrrolo[2,1-d][1,5]-benzothiazepine derivatives (54-68) are described. Selective peripheral-type benzodiazepine receptor (PBR) ligands, such as PK 11195 and Ro 5-4864, have recently been found to possess low but significant inhibitory activity of L-type calcium channels, and this property is implicated in the cardiovascular effects observed with these compounds. In functional studies both PK 11195 (1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxa mide) and Ro 5-4864 (4'-chlorodiazepam) did not display selectivity between cardiac and vascular tissue. Therefore, several 7-(acyloxy)-6-arylpyrrolo[2,1-d][1,5]benzothiazepines, potent and selective peripheral-type benzodiazepine receptor ligands recently developed by us (3, 7-20), were subjected to calcium channel receptor binding assay. Some of these compounds showed an unexpected potency in displacing the binding of [3H]nitrendipine from L-type calcium channels, much higher than that reported for PK 11195 and Ro 5-4864 and equal to or higher than that of reference calcium antagonists such as verapamil and (+)-cis-diltiazem. Specifically, in rat cortex homogenate, our prototypic PBR ligand 7-acetoxy-6-(p-methoxyphenyl)pyrrolo[2,1-d][1,5]benzothiazepine (3) showed an IC50 equal to 0.13 nM for inhibition of [3H]nitrendipine binding. Furthermore, in functional studies this compound displayed a clear-cut selectivity for cardiac over vascular tissue. Comparison of calcium antagonist activity on guinea pig aorta strips with the negative inotropic activity, determined by using isolated guinea pig left atria, revealed that 3 displayed higher selectivity than the reference (+)-cis-diltiazem. Thus, the pyrrolobenzothiazepine 3 might represent a new tool for characterizing the relationship between the PBR and cardiac function. Furthermore, we have also investigated the structural dependence of binding to PBR and L-type calcium channels, and this study allowed us to identify a new class of potent calcium channel blockers selective for cardiac over vascular tissue, with no affinity for PBR. A number of structure-activity relationship trends have been identified, and a possible explanation is advanced in order to account for the observed differences in selectivity. Three structural features, namely, (i) the saturation of the C(6)-C(7) double bond, with a consequent higher molecular flexibility, (ii) the presence of a substituent in the benzofused ring, and (iii) a basic side chain at C-10 of the pyrrolobenzothiazepine ring system, were found to be responsible for potent L-type calcium channel antagonism and clear-cut selectivity for cardiac over vascular tissue. Among the synthesized compounds the pyrrolobenzothiazepine 62 was found to be the most promising selective calcium channel blocker. Additionally, the molecular structure determination of the key intermediate 48 by X-ray diffraction, molecular modeling, and NMR analysis is reported.


Asunto(s)
Bloqueadores de los Canales de Calcio/síntesis química , Canales de Calcio/metabolismo , Sistema Cardiovascular/efectos de los fármacos , Pirroles/síntesis química , Receptores de GABA-A/metabolismo , Tiazepinas/síntesis química , Animales , Función Atrial , Unión Competitiva , Bloqueadores de los Canales de Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Corteza Cerebral/metabolismo , Depresión Química , Femenino , Cobayas , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Modelos Moleculares , Contracción Miocárdica/efectos de los fármacos , Miocardio/metabolismo , Pirroles/metabolismo , Pirroles/farmacología , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Tiazepinas/metabolismo , Tiazepinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA