Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nature ; 580(7802): 227-231, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32269351

RESUMEN

Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Bosques , Árboles/metabolismo , Biomasa , Eucalyptus/crecimiento & desarrollo , Eucalyptus/metabolismo , Calentamiento Global/prevención & control , Modelos Biológicos , Nueva Gales del Sur , Fotosíntesis , Suelo/química , Árboles/crecimiento & desarrollo
2.
Plant Cell Environ ; 47(5): 1865-1876, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38334166

RESUMEN

The response of plants to increasing atmospheric CO2 depends on the ecological context where the plants are found. Several experiments with elevated CO2 (eCO2) have been done worldwide, but the Amazonian forest understory has been neglected. As the central Amazon is limited by light and phosphorus, understanding how understory responds to eCO2 is important for foreseeing how the forest will function in the future. In the understory of a natural forest in the Central Amazon, we installed four open-top chambers as control replicates and another four under eCO2 (+250 ppm above ambient levels). Under eCO2, we observed increases in carbon assimilation rate (67%), maximum electron transport rate (19%), quantum yield (56%), and water use efficiency (78%). We also detected an increase in leaf area (51%) and stem diameter increment (65%). Central Amazon understory responded positively to eCO2 by increasing their ability to capture and use light and the extra primary productivity was allocated to supporting more leaf and conducting tissues. The increment in leaf area while maintaining transpiration rates suggests that the understory will increase its contribution to evapotranspiration. Therefore, this forest might be less resistant in the future to extreme drought, as no reduction in transpiration rates were detected.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Fotosíntesis/fisiología , Bosques , Transporte de Electrón , Hojas de la Planta
3.
Glob Chang Biol ; 30(1): e17022, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37962234

RESUMEN

The ascent of water from the soil to the leaves of vascular plants, described by the study of plant hydraulics, regulates ecosystem responses to environmental forcing and recovery from stress periods. Several approaches to model plant hydraulics have been proposed. In this study, we introduce four different versions of plant hydraulics representations in the terrestrial biosphere model T&C to understand the significance of plant hydraulics to ecosystem functioning. We tested representations of plant hydraulics, investigating plant water capacitance, and long-term xylem damages following drought. The four models we tested were a combination of representations including or neglecting capacitance and including or neglecting xylem damage legacies. Using the models at six case studies spanning semiarid to tropical ecosystems, we quantify how plant xylem flow, plant water storage and long-term xylem damage can modulate overall water and carbon dynamics across multiple time scales. We show that as drought develops, models with plant hydraulics predict a slower onset of plant water stress, and a diurnal variability of water and carbon fluxes closer to observations. Plant water storage was found to be particularly important for the diurnal dynamics of water and carbon fluxes, with models that include plant water capacitance yielding better results. Models including permanent damage to conducting plant tissues show an additional significant drought legacy effect, limiting plant productivity during the recovery phase following major droughts. However, when considering ecosystem responses to the observed climate variability, plant hydraulic modules alone cannot significantly improve the overall model performance, even though they reproduce more realistic water and carbon dynamics. This opens new avenues for model development, explicitly linking plant hydraulics with additional ecosystem processes, such as plant phenology and improved carbon allocation algorithms.


Asunto(s)
Ecosistema , Plantas , Hojas de la Planta/fisiología , Sequías , Xilema , Carbono
4.
Glob Chang Biol ; 29(7): 1922-1938, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36607160

RESUMEN

Responses of the terrestrial biosphere to rapidly changing environmental conditions are a major source of uncertainty in climate projections. In an effort to reduce this uncertainty, a wide range of global change experiments have been conducted that mimic future conditions in terrestrial ecosystems, manipulating CO2 , temperature, and nutrient and water availability. Syntheses of results across experiments provide a more general sense of ecosystem responses to global change, and help to discern the influence of background conditions such as climate and vegetation type in determining global change responses. Several independent syntheses of published data have yielded distinct databases for specific objectives. Such parallel, uncoordinated initiatives carry the risk of producing redundant data collection efforts and have led to contrasting outcomes without clarifying the underlying reason for divergence. These problems could be avoided by creating a publicly available, updatable, curated database. Here, we report on a global effort to collect and curate 57,089 treatment responses across 3644 manipulation experiments at 1145 sites, simulating elevated CO2 , warming, nutrient addition, and precipitation changes. In the resulting Manipulation Experiments Synthesis Initiative (MESI) database, effects of experimental global change drivers on carbon and nutrient cycles are included, as well as ancillary data such as background climate, vegetation type, treatment magnitude, duration, and, unique to our database, measured soil properties. Our analysis of the database indicates that most experiments are short term (one or few growing seasons), conducted in the USA, Europe, or China, and that the most abundantly reported variable is aboveground biomass. We provide the most comprehensive multifactor global change database to date, enabling the research community to tackle open research questions, vital to global policymaking. The MESI database, freely accessible at doi.org/10.5281/zenodo.7153253, opens new avenues for model evaluation and synthesis-based understanding of how global change affects terrestrial biomes. We welcome contributions to the database on GitHub.


Asunto(s)
Dióxido de Carbono , Ecosistema , Biomasa , Cambio Climático , Clima , Suelo
5.
New Phytol ; 234(2): 353-374, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35007351

RESUMEN

Evergreen species are widespread across the globe, representing two major plant functional forms in terrestrial models. We reviewed and analysed the responses of photosynthesis and respiration to warming in 101 evergreen species from boreal to tropical biomes. Summertime temperatures affected both latitudinal gas exchange rates and the degree of responsiveness to experimental warming. The decrease in net photosynthesis at 25°C (Anet25 ) was larger with warming in tropical climates than cooler ones. Respiration at 25°C (R25 ) was reduced by 14% in response to warming across species and biomes. Gymnosperms were more sensitive to greater amounts of warming than broadleaved evergreens, with Anet25 and R25 reduced c. 30-40% with > 10°C warming. While standardised rates of carboxylation (Vcmax25 ) and electron transport (Jmax25 ) adjusted to warming, the magnitude of this adjustment was not related to warming amount (range 0.6-16°C). The temperature optimum of photosynthesis (ToptA ) increased on average 0.34°C per °C warming. The combination of more constrained acclimation of photosynthesis and increasing respiration rates with warming could possibly result in a reduced carbon sink in future warmer climates. The predictable patterns of thermal acclimation across biomes provide a strong basis to improve modelling predictions of the future terrestrial carbon sink with warming.


Asunto(s)
Hojas de la Planta , Árboles , Aclimatación/fisiología , Dióxido de Carbono , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Respiración , Temperatura , Clima Tropical
6.
New Phytol ; 235(1): 94-110, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35363880

RESUMEN

Predicting species-level responses to drought at the landscape scale is critical to reducing uncertainty in future terrestrial carbon and water cycle projections. We embedded a stomatal optimisation model in the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model and parameterised the model for 15 canopy dominant eucalypt tree species across South-Eastern Australia (mean annual precipitation range: 344-1424 mm yr-1 ). We conducted three experiments: applying CABLE to the 2017-2019 drought; a 20% drier drought; and a 20% drier drought with a doubling of atmospheric carbon dioxide (CO2 ). The severity of the drought was highlighted as for at least 25% of their distribution ranges, 60% of species experienced leaf water potentials beyond the water potential at which 50% of hydraulic conductivity is lost due to embolism. We identified areas of severe hydraulic stress within-species' ranges, but we also pinpointed resilience in species found in predominantly semiarid areas. The importance of the role of CO2 in ameliorating drought stress was consistent across species. Our results represent an important advance in our capacity to forecast the resilience of individual tree species, providing an evidence base for decision-making around the resilience of restoration plantings or net-zero emission strategies.


Asunto(s)
Sequías , Árboles , Dióxido de Carbono , Hojas de la Planta/fisiología , Agua/fisiología
7.
Plant Cell Environ ; 45(9): 2744-2761, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35686437

RESUMEN

There is a pressing need to better understand ecosystem resilience to droughts and heatwaves. Eco-evolutionary optimization approaches have been proposed as means to build this understanding in land surface models and improve their predictive capability, but competing approaches are yet to be tested together. Here, we coupled approaches that optimize canopy gas exchange and leaf nitrogen investment, respectively, extending both approaches to account for hydraulic impairment. We assessed model predictions using observations from a native Eucalyptus woodland that experienced repeated droughts and heatwaves between 2013 and 2020, whilst exposed to an elevated [CO2 ] treatment. Our combined approaches improved predictions of transpiration and enhanced the simulated magnitude of the CO2 fertilization effect on gross primary productivity. The competing approaches also worked consistently along axes of change in soil moisture, leaf area, and [CO2 ]. Despite predictions of a significant percentage loss of hydraulic conductivity due to embolism (PLC) in 2013, 2014, 2016, and 2017 (99th percentile PLC > 45%), simulated hydraulic legacy effects were small and short-lived (2 months). Our analysis suggests that leaf shedding and/or suppressed foliage growth formed a strategy to mitigate drought risk. Accounting for foliage responses to water availability has the potential to improve model predictions of ecosystem resilience.


Asunto(s)
Ecosistema , Eucalyptus , Dióxido de Carbono , Sequías , Eucalyptus/fisiología , Bosques , Hojas de la Planta , Agua/fisiología
8.
Glob Chang Biol ; 28(11): 3489-3514, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35315565

RESUMEN

In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those 'next users' of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.


Asunto(s)
Dióxido de Carbono , Ecosistema , Australia , Ciclo del Carbono , Cambio Climático
9.
Plant J ; 101(4): 858-873, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31659806

RESUMEN

The CO2 transfer conductance within plant leaves (mesophyll conductance, gm ) is currently not considered explicitly in most land surface models (LSMs), but instead treated implicitly as an intrinsic property of the photosynthetic machinery. Here, we review approaches to overcome this model deficiency by explicitly accounting for gm , which comprises the re-adjustment of photosynthetic parameters and a model describing the variation of gm in dependence of environmental conditions. An explicit representation of gm causes changes in the response of photosynthesis to environmental factors, foremost leaf temperature, and ambient CO2 concentration, which are most pronounced when gm is small. These changes in leaf-level photosynthesis translate into a stronger climate and CO2 response of gross primary productivity (GPP) and transpiration at the global scale. The results from two independent studies show consistent latitudinal patterns of these effects with biggest differences in GPP in the boreal zone (up to ~15%). Transpiration and evapotranspiration show spatially similar, but attenuated, changes compared with GPP. These changes are indirect effects of gm caused by the assumed strong coupling between stomatal conductance and photosynthesis in current LSMs. Key uncertainties in these simulations are the variation of gm with light and the robustness of its temperature response across plant types and growth conditions. Future research activities focusing on the response of gm to environmental factors and its relation to other plant traits have the potential to improve the representation of photosynthesis in LSMs and to better understand its present and future role in the Earth system.


Asunto(s)
Células del Mesófilo/fisiología , Modelos Teóricos , Fotosíntesis/fisiología , Transpiración de Plantas/fisiología , Dióxido de Carbono/metabolismo , Ambiente , Luz , Suelo/química , Temperatura , Agua/metabolismo
10.
New Phytol ; 231(6): 2118-2124, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34101183

RESUMEN

Plant responses to elevated atmospheric carbon dioxide (eCO2 ) have been hypothesized as a key mechanism that may ameliorate the impact of future drought. Yet, despite decades of experiments, the question of whether eCO2 reduces plant water use, yielding 'water savings' that can be used to maintain plant function during periods of water stress, remains unresolved. In this Viewpoint, we identify the experimental challenges and limitations to our understanding of plant responses to drought under eCO2 . In particular, we argue that future studies need to move beyond exploring whether eCO2 played 'a role' or 'no role' in responses to drought, but instead more carefully consider the timescales and conditions that would induce an influence. We also argue that considering emergent differences in soil water content may be an insufficient means of assessing the impact of eCO2 . We identify eCO2 impact during severe drought (e.g. to the point of mortality), interactions with future changes in vapour pressure deficit and uncertainty about changes in leaf area as key gaps in our current understanding. New insights into CO2 × drought interactions are essential to better constrain model theory that governs future climate model projections of land-atmosphere interactions during periods of water stress.


Asunto(s)
Dióxido de Carbono , Sequías , Hojas de la Planta/química , Suelo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA