Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 140(40): 12964-12973, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30222338

RESUMEN

Since the discovery that ceria is an active catalyst for selective hydrogenation of alkynes, there has been much debate on the catalytic mechanism. In this work, we propose, based on density functional theory (DFT) investigations, a mechanism that involves the heterolytic dissociation of H2 at oxygen vacancies of CeO2(111), facilitated by frustrated Lewis pairs consisting of spatially separated O and Ce sites. The resulting O-H and Ce-H species effectively catalyze the hydrogenation of acetylene, avoiding the overstabilization of the C2H3* intermediate in a previously proposed mechanism. On the basis of our mechanism, we propose the doping of ceria by Ni as a means to create oxygen vacancies. Interestingly, the Ni dopant is not directly involved in the catalytic reaction, but serves as a single-atom promoter. Experimental studies confirm the design principles and demonstrate much higher activity for Ni-doped ceria in selective hydrogenation of acetylene. The combined results from DFT calculations and experiment provide a basis to further develop selective hydrogenation catalysts based on earth-abundant materials.

2.
ACS Appl Mater Interfaces ; 13(7): 8120-8128, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33565850

RESUMEN

The chemical complexity of single-phase multicationic oxides, commonly termed high entropy oxides (HEOs), enables the integration of conventionally incompatible metal cations into a single-crystalline phase. However, few studies have effectively leveraged the multicationic nature of HEOs for optimization of disparate physical and chemical properties. Here, we apply the HEO concept to design robust oxidation catalysts in which multicationic oxide composition is tailored to simultaneously achieve catalytic activity, oxygen storage capacity, and thermal stability. Unlike conventional catalysts, HEOs maintain single-phase structure, even at high temperature, and do not rely on the addition of expensive platinum group metals (PGM) to be active. The HEOs are synthesized through a facile, relatively low temperature (500 °C) sol-gel method, which avoids excessive sintering and catalyst deactivation. Nanostructured high entropy oxides with surface areas as high as 138 m2/g are produced, marking a significant structural improvement over previously reported HEOs. Each HEO contained Ce in varying concentrations, as well as four other metals among Al, Fe, La, Mn, Nd, Pr, Sm, Y, and Zr. All samples adopted a fluorite structure. First row transition metal cations were most effective at improving CO oxidation activity, but their incorporation reduced thermal stability. Rare earth cations were necessary to prevent thermal deactivation while maintaining activity. In sum, our work demonstrates the utility of entropy in complex oxide design and a low-energy synthetic route to produce nanostructured HEOs with cations selected for a cooperative effect toward robust performance in chemically and physically demanding applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA