Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(13): e2218847120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36940339

RESUMEN

Surface tension provides microbubbles (MB) with a perfect spherical shape. Here, we demonstrate that MB can be engineered to be nonspherical, endowing them with unique features for biomedical applications. Anisotropic MB were generated via one-dimensionally stretching spherical poly(butyl cyanoacrylate) MB above their glass transition temperature. Compared to their spherical counterparts, nonspherical polymeric MB displayed superior performance in multiple ways, including i) increased margination behavior in blood vessel-like flow chambers, ii) reduced macrophage uptake in vitro, iii) prolonged circulation time in vivo, and iv) enhanced blood-brain barrier (BBB) permeation in vivo upon combination with transcranial focused ultrasound (FUS). Our studies identify shape as a design parameter in the MB landscape, and they provide a rational and robust framework for further exploring the application of anisotropic MB for ultrasound-enhanced drug delivery and imaging applications.


Asunto(s)
Barrera Hematoencefálica , Microburbujas , Barrera Hematoencefálica/diagnóstico por imagen , Ultrasonografía , Transporte Biológico , Sistemas de Liberación de Medicamentos
2.
Small ; 20(2): e2303444, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37705132

RESUMEN

In this report, a versatile method is demonstrated to create colloidal suprastructures by assembly and supramolecular interlinking of microgels using droplet-based microfluidics. The behavior of the microgels is systematically investigated to evaluate the influence of their concentration on their distribution between the continuous, the droplet phase, and the interface. At low concentrations, microgels are mainly localized at the water-oil interface whereas an excess of microgels results, following the complete coverage of the water-oil interface, in their distribution in the continuous phase. To stabilize the colloidal suprastructure, on-chip gelation is introduced by adding natural polyphenol tannic acid (TA) in the water phase. TA forms interparticle linking between the poly(N-vinylcaprolactam) (PVCL) microgels by supramolecular interactions. The combination of supramolecular interlinking with the variation of the microgel concentration in microfluidic droplets enables on-chip fabrication of defined colloidal suprastructures with morphologies ranging from colloidosomes to colloidal supraballs. The obtained supracolloidal structures exhibit a pH-responsive behavior with a disintegration at alkaline conditions within a scale of seconds. The destabilization process results from the deprotonation of phenolic groups and destruction of hydrogen bonds with PVCL chains at higher pH.

3.
Angew Chem Int Ed Engl ; 62(44): e202309779, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37712344

RESUMEN

Microgels are water-swollen, crosslinked polymers that are widely used as colloidal building blocks in scaffold materials for tissue engineering and regenerative medicine. Microgels can be controlled in their stiffness, degree of swelling, and mesh size depending on their polymer architecture, crosslink density, and fabrication method-all of which influence their function and interaction with the environment. Currently, there is a lack of understanding of how the polymer composition influences the internal structure of soft microgels and how this morphology affects specific biomedical applications. In this report, we systematically vary the architecture and molar mass of polyethylene glycol-acrylate (PEG-Ac) precursors, as well as their concentration and combination, to gain insight in the different parameters that affect the internal structure of rod-shaped microgels. We characterize the mechanical properties and diffusivity, as well as the conversion of acrylate groups during photopolymerization, in both bulk hydrogels and microgels produced from the PEG-Ac precursors. Furthermore, we investigate cell-microgel interaction, and we observe improved cell spreading on microgels with more accessible RGD peptide and with a stiffness in a range of 20 kPa to 50 kPa lead to better cell growth.


Asunto(s)
Microgeles , Microgeles/química , Hidrogeles/química , Andamios del Tejido/química , Polímeros , Polietilenglicoles/química , Acrilatos
4.
Mol Pharm ; 19(9): 3256-3266, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35905480

RESUMEN

Gas-filled microbubbles (MB) are routinely used in the clinic as ultrasound contrast agents. MB are also increasingly explored as drug delivery vehicles based on their ultrasound stimuli-responsiveness and well-established shell functionalization routes. Broadening the range of MB properties can enhance their performance in both imaging and drug delivery applications. This can be promoted by systematically varying the reagents used in the synthesis of MB, which in the case of polymeric MB include surfactants. We therefore set out to study the effect of key surfactant characteristics, such as the chemical structure, molecular weight, and hydrophilic-lipophilic balance on the formation of poly(butyl cyanoacrylate) (PBCA) MB, as well as on their properties, including shell thickness, drug loading capacity, ultrasound contrast, and acoustic stability. Two different surfactant families (i.e., Triton X and Tween) were employed, which show opposite molecular weight vs hydrophilic-lipophilic balance trends. For both surfactant types, we found that the shell thickness of PBCA MB increased with higher-molecular-weight surfactants and that the resulting MB with thicker shells showed higher drug loading capacities and acoustic stability. Furthermore, the higher proportion of smaller polymer chains of the Triton X-based MB (as compared to those of the Tween-based ones) resulted in lower polymer entanglement, improving drug loading capacity and ultrasound contrast response. These findings open up new avenues to fine-tune the shell properties of polymer-based MB for enhanced ultrasound imaging and drug delivery applications.


Asunto(s)
Microburbujas , Tensoactivos , Acústica , Medios de Contraste/química , Humanos , Octoxinol , Preparaciones Farmacéuticas , Polímeros/química , Polisorbatos , Tensoactivos/química
5.
Macromol Rapid Commun ; 41(18): e2000191, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32783361

RESUMEN

The replacement of diseased and damaged organs remains an challenge in modern medicine. However, through the use of tissue engineering techniques, it may soon be possible to (re)generate tissues and organs using artificial scaffolds. For example, hydrogel networks made from hydrophilic precursor solutions can replicate many properties found in the natural extracellular matrix (ECM) but often lack the dynamic nature of the ECM, as many covalently crosslinked hydrogels possess elastic and static networks with nanoscale pores hindering cell migration without being degradable. To overcome this, macroporous colloidal hydrogels can be prepared to facilitate cell infiltration. Here, an easy method is presented to fabricate granular cellulose nanofibril hydrogel (CNF) scaffolds as porous networks for 3D cell cultivation. CNF is an abundant natural and highly biocompatible material that supports cell adhesion. Granular CNF scaffolds are generated by pre-crosslinking CNF using calcium and subsequently pressing the gel through micrometer-sized nylon meshes. The granular solution is mixed with fibroblasts and crosslinked with cell culture medium. The obtained granular CNF scaffold is significantly softer and enables well-distributed fibroblast growth. This cost-effective material combined with this efficient and facile fabrication technique allows for 3D cell cultivation in an upscalable manner.


Asunto(s)
Celulosa , Hidrogeles , Materiales Biocompatibles , Porosidad , Ingeniería de Tejidos , Andamios del Tejido
6.
Small ; 15(20): e1900692, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30993907

RESUMEN

Complex 3D artificial tissue constructs are extensively investigated for tissue regeneration. Frequently, materials and cells are delivered separately without benefitting from the synergistic effect of combined administration. Cell delivery inside a material construct provides the cells with a supportive environment by presenting biochemical, mechanical, and structural signals to direct cell behavior. Conversely, the cell/material interaction is poorly understood at the micron scale and new systems are required to investigate the effect of micron-scale features on cell functionality. Consequently, cells are encapsulated in microgels to avoid diffusion limitations of nutrients and waste and facilitate analysis techniques of single or collective cells. However, up to now, the production of soft cell-loaded microgels by microfluidics is limited to spherical microgels. Here, a novel method is presented to produce monodisperse, anisometric poly(ethylene) glycol microgels to study cells inside an anisometric architecture. These microgels can potentially direct cell growth and can be injected as rod-shaped mini-tissues that further assemble into organized macroscopic and macroporous structures post-injection. Their aspect ratios are adjusted with flow parameters, while mechanical and biochemical properties are altered by modifying the precursors. Encapsulated primary fibroblasts are viable and spread and migrate across the 3D microgel structure.


Asunto(s)
Encapsulación Celular , Fibroblastos/citología , Microfluídica , Microgeles/química , Polietilenglicoles/química , Células Cultivadas , Módulo de Elasticidad , Humanos , Concentración de Iones de Hidrógeno
7.
Biomacromolecules ; 20(10): 3746-3754, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31433624

RESUMEN

Human induced pluripotent stem cells (hiPSCs) are used as an alternative for human embryonic stem cells. Cardiomyocytes derived from hiPSCs are employed in cardiac tissue regeneration constructs due to the heart's low regeneration capacity after infarction. A coculture of hiPSC-CM and primary dermal fibroblasts is encapsulated in injectable poly(ethylene glycol)-based microgels via microfluidics to enhance the efficiency of regenerative cell transplantations. The microgels are prepared via Michael-type addition of multi-arm PEG-based molecules with an enzymatically degradable peptide as a cross-linker and modified with a cell-adhesive peptide. Cell-cell interactions and, consequently, cell viability are improved by a thin extracellular matrix (ECM) coating formed on the cell surfaces via layer-by-layer (LbL) deposition. The beating strength of encapsulated cardiomyocytes (∼60 BPM) increases by 2-fold compared to noncoated cells. The combination of microfluidics with the LbL technique offers a new technology to fabricate functional cardiac mini tissues for cell transplantation therapies.


Asunto(s)
Hidrogeles/química , Microfluídica/métodos , Contracción Miocárdica , Miocitos Cardíacos/fisiología , Ingeniería de Tejidos/métodos , Adhesión Celular , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo/métodos , Reactivos de Enlaces Cruzados/química , Matriz Extracelular/química , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Oligopéptidos/química , Polietilenglicoles/química , Análisis de la Célula Individual/métodos , Andamios del Tejido/química
8.
Biomacromolecules ; 20(11): 4075-4087, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614080

RESUMEN

An enzymatically cross-linked polyethylene glycol (PEG)-based hydrogel was engineered to promote and align nerve cells in a three-dimensional manner. To render the injectable, otherwise bioinert, PEG-based material supportive for cell growth, its mechanical and biochemical properties were optimized. A recombinant fibronectin fragment (FNIII9*-10/12-14) was coupled to the PEG backbone during gelation to provide cell adhesive and growth factor binding domains in close vicinity. Compared to full-length fibronectin, FNIII9*-10/12-14 supports nerve growth at similar concentrations. In a 3D environment, only the ultrasoft 1 w/v% PEG hydrogels with a storage modulus of ∼10 Pa promoted neuronal growth. This gel was used to establish the first fully synthetic, injectable Anisogel by the addition of magnetically aligned microelements, such as rod-shaped microgels or short fibers. The Anisogel led to linear neurite extension and represents a large step in the direction of clinical translation with the opportunity to treat acute spinal cord injuries.


Asunto(s)
Fibronectinas/farmacología , Hidrogeles/farmacología , Neuronas/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Materiales Biocompatibles/química , Proliferación Celular/efectos de los fármacos , Fibronectinas/química , Humanos , Hidrogeles/química , Tejido Nervioso/efectos de los fármacos , Tejido Nervioso/crecimiento & desarrollo , Neuritas/efectos de los fármacos , Polietilenglicoles/química , Polietilenglicoles/farmacología , Traumatismos de la Médula Espinal/patología
9.
Cell Mol Life Sci ; 75(18): 3297-3312, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29728714

RESUMEN

Mechanical stimulation affects growth and differentiation of stem cells. This may be used to guide lineage-specific cell fate decisions and therefore opens fascinating opportunities for stem cell biology and regenerative medicine. Several studies demonstrated functional and molecular effects of mechanical stimulation but on first sight these results often appear to be inconsistent. Comparison of such studies is hampered by a multitude of relevant parameters that act in concert. There are notorious differences between species, cell types, and culture conditions. Furthermore, the utilized culture substrates have complex features, such as surface chemistry, elasticity, and topography. Cell culture substrates can vary from simple, flat materials to complex 3D scaffolds. Last but not least, mechanical forces can be applied with different frequency, amplitude, and strength. It is therefore a prerequisite to take all these parameters into consideration when ascribing their specific functional relevance-and to only modulate one parameter at the time if the relevance of this parameter is addressed. Such research questions can only be investigated by interdisciplinary cooperation. In this review, we focus particularly on mesenchymal stem cells and pluripotent stem cells to discuss relevant parameters that contribute to the kaleidoscope of mechanical stimulation of stem cells.


Asunto(s)
Elasticidad , Células Madre Mesenquimatosas/citología , Resistencia al Corte , Diferenciación Celular/efectos de los fármacos , Dimetilpolisiloxanos/farmacología , Humanos , Hidrogeles/química , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Plásticos/farmacología
10.
Photochem Photobiol Sci ; 17(5): 617-621, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29687129

RESUMEN

Photoacoustic imaging presents an innocuous imaging modality with good penetration depth and resolution. To use this modality for detection and imaging of pathological sites, new imaging probes need to be developed to enhance the contrast over endogenous sonophores. These contrast agents should specifically bind to the site of interest, be non-toxic and be cleared renally if applied intravenously. Small organic dyes with absorption in the near infrared spectrum often exhibit good photoacoustic response. However, such dyes are often not water soluble or they are cytotoxic. Here, we present a novel PEGylated sonophore based on diketopyrrolopyrrole (DPP), which overcomes these limitations and can be functionalized with desired biological recognition motifs using thiol-yne click chemistry. Proof of concept is demonstrated by functionalizing the DPP-based probe with an RGD peptide, resulting in specific binding to endothelial (HUVEC) cells and an efficient photoacoustic response.

11.
Nano Lett ; 17(6): 3782-3791, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28326790

RESUMEN

Injectable biomaterials provide the advantage of a minimally invasive application but mostly lack the required structural complexity to regenerate aligned tissues. Here, we report a new class of tissue regenerative materials that can be injected and form an anisotropic matrix with controlled dimensions using rod-shaped, magnetoceptive microgel objects. Microgels are doped with small quantities of superparamagnetic iron oxide nanoparticles (0.0046 vol %), allowing alignment by external magnetic fields in the millitesla order. The microgels are dispersed in a biocompatible gel precursor and after injection and orientation are fixed inside the matrix hydrogel. Regardless of the low volume concentration of the microgels below 3%, at which the geometrical constrain for orientation is still minimum, the generated macroscopic unidirectional orientation is strongly sensed by the cells resulting in parallel nerve extension. This finding opens a new, minimal invasive route for therapy after spinal cord injury.


Asunto(s)
Hidrogeles/química , Nanopartículas del Metal/química , Neuronas/citología , Animales , Anisotropía , Materiales Biocompatibles , Pollos , Campos Electromagnéticos , Compuestos Férricos/química , Compuestos Férricos/toxicidad , Fibroblastos/citología , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Nanopartículas del Metal/toxicidad , Ratones , Neuronas/efectos de los fármacos , Neuronas/fisiología , Tamaño de la Partícula , Polietilenglicoles/química , Polietilenos/química , Polipropilenos/química , Andamios del Tejido/química
12.
Anal Chem ; 89(11): 5991-5997, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28492301

RESUMEN

We describe a highly sensitive competition ELISA to measure integrin-binding of RGD-peptides in high-throughput without using cells, ECM-proteins, or antibodies. The assay measures (nonlabeled) RGD-peptides' ability to inhibit binding of a biotinylated "knottin"-RGD peptide to surface-immobilized integrins and, thus, enables quantification of the binding strength of high-, medium-, and low-affinity RGD-binders. We introduced the biotinylated knottin-RGD peptide instead of biotinylated cyclo[RGDfK] (as reported by Piras et al.), as integrin-binding was much stronger and clearly detectable for all three integrins. In order to maximize sensitivity and cost-efficiency, we first optimized several parameters, such as integrin-immobilization levels, knottin-RGD concentration, buffer compositions, type of detection tag (biotin, His- or cMyc-tag), and spacer length. We thereby identified two key factors, that is, (i) the critical spacer length (longer than Gly) and (ii) the presence of Ca2+ and Mg2+ in all incubation and washing buffers. Binding of knottin-RGD peptide was strongest for αvß3 but also detectable for both αvß5 and α5ß1, while binding of biotinylated cyclo[RGDfK] was very weak and only detectable for αvß3. For assay validation, we finally determined IC50 values for three unlabeled peptides, that is: (i) linear GRGDS, (ii) cyclo[RGDfK], and (iii) the knottin-RGD itself for binding to three different integrin receptors (αvß3, αvß5, α5ß1). Major benefits of the novel assay are (i) the extremely low consumption of integrin (50 ng/peptide), (ii) the fact that neither antibodies/ECM-proteins nor integrin-expressing cells are required for detection, and (iii) its suitability for high-throughput screening of (RGD-)peptide libraries.


Asunto(s)
Miniproteínas Nodales de Cistina/metabolismo , Ensayos Analíticos de Alto Rendimiento , Oligopéptidos , Péptidos/metabolismo , Biotinilación , Miniproteínas Nodales de Cistina/química , Integrina alfa5beta1/antagonistas & inhibidores , Integrina alfa5beta1/metabolismo , Integrina alfaVbeta3/antagonistas & inhibidores , Integrina alfaVbeta3/metabolismo , Biblioteca de Péptidos , Péptidos/química , Unión Proteica , Receptores de Vitronectina/antagonistas & inhibidores , Receptores de Vitronectina/metabolismo
13.
Small ; 13(36)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28783255

RESUMEN

To regenerate soft aligned tissues in living organisms, low invasive biomaterials are required to create 3D microenvironments with a structural complexity to mimic the tissue's native architecture. Here, a tunable injectable hydrogel is reported, which allows precise engineering of the construct's anisotropy in situ. This material is defined as an Anisogel, representing a new type of tissue regenerative therapy. The Anisogel comprises a soft hydrogel, surrounding magneto-responsive, cell adhesive, short fibers, which orient in situ in the direction of a low external magnetic field, before complete gelation of the matrix. The magnetic field can be removed after gelation of the biocompatible gel precursor, which fixes the aligned fibers and preserves the anisotropic structure of the Anisogel. Fibroblasts and nerve cells grow and extend unidirectionally within the Anisogels, in comparison to hydrogels without fibers or with randomly oriented fibers. The neurons inside the Anisogel show spontaneous electrical activity with calcium signals propagating along the anisotropy axis of the material. The reported system is simple and elegant and the short magneto-responsive fibers can be produced with an effective high-throughput method, ideal for a minimal invasive route for aligned tissue therapy.


Asunto(s)
Hidrogeles/farmacología , Inyecciones , Neuronas/citología , Animales , Anisotropía , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Neuronas/efectos de los fármacos
14.
Biomacromolecules ; 17(3): 905-13, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26812393

RESUMEN

The merging of defined nanoscale building blocks with advanced additive manufacturing techniques is of eminent importance for the preparation of multiscale and highly functional materials with de novo designed hierarchical architectures. Here, we demonstrate that hydrogels of cellulose nanofibrils (CNF) can be processed into complex shapes, and used as a sacrificial template to prepare freestanding cell constructs. We showcase our approach for the fabrication of hollow fibers using a controlled extrusion through a circular die into a coagulation bath. The dimensions of the hollow fibers are tunable, and the final tubes combine the nanofibrillar porosity of the CNF hydrogel with a submillimeter wall thickness and centimeter-scale length provided by the additive manufacturing technique. We demonstrate that covalent and supramolecular cross-linking of the CNFs can be used to tailor the mechanical properties of the hydrogel tubes within 1 order of magnitude and in an attractive range for the mechanosensation of cells. The resulting tubes are highly biocompatible and allow for the growth of mouse fibroblasts into confluent cell layers in their inner lumen. A detailed screening of several cellulases enables degradation of the scaffolding, temporary CNF hydrogel tube in a quick and highly cell-friendly way, and allows the isolation of coherent cell tubes. We foresee that the growing capabilities of hydrogel printing techniques in combination with the attractive features of CNFs-sustainable, globally abundant, biocompatible and enzymatically degradable-will allow making plant-based biomaterials with hierarchical structures and on-demand degradation useful, for instance, to engineer complex tissue structures to replace animal models, and for implants.


Asunto(s)
Celulosa/análogos & derivados , Hidrogeles/química , Nanotubos/química , Andamios del Tejido/química , Animales , Línea Celular , Celulasa/química , Fibroblastos/efectos de los fármacos , Hidrogeles/efectos adversos , Fenómenos Mecánicos , Ratones , Nanotubos/efectos adversos , Andamios del Tejido/efectos adversos
15.
ACS Appl Mater Interfaces ; 16(1): 30-43, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38150508

RESUMEN

Mesenchymal stem cells (MSCs) have the potential to differentiate into multiple lineages and can be harvested relatively easily from adults, making them a promising cell source for regenerative therapies. While it is well-known how to consistently differentiate MSCs into adipose, chondrogenic, and osteogenic lineages by treatment with biochemical factors, the number of studies exploring how to achieve this with mechanical signals is limited. A relatively unexplored area is the effect of cyclic forces on the MSC differentiation. Recently, our group developed a thermoresponsive N-ethyl acrylamide/N-isopropylacrylamide (NIPAM/NEAM) hydrogel supplemented with gold nanorods that are able to convert near-infrared light into heat. Using light pulses allows for local hydrogel collapse and swelling with physiologically relevant force and frequency. In this study, MSCs are cultured on this hydrogel system with a patterned surface and exposed to intermittent or continuous actuation of the hydrogel for 3 days to study the effect of actuation on MSC differentiation. First, cells are harvested from the bone marrow of three donors and tested for their MSC phenotype, meeting the following criteria: the harvested cells are adherent and demonstrate a fibroblast-like bipolar morphology. They lack the expression of CD34 and CD45 but do express CD73, CD90, and CD105. Additionally, their differentiation potential into adipogenic, chondrogenic, and osteogenic lineages is validated by the addition of standardized differentiation media. Next, MSCs are exposed to intermittent or continuous actuation, which leads to a significantly enhanced cell spreading compared to nonactuated cells. Moreover, actuation results in nuclear translocation of Runt-related transcription factor 2 and the Yes-associated protein. Together, these results indicate that cyclic mechanical stimulation on a soft, ridged substrate modulates the MSC fate commitment in the direction of osteogenesis.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Adulto , Humanos , Osteogénesis/fisiología , Hidrogeles/farmacología , Hidrogeles/metabolismo , Células Cultivadas , Diferenciación Celular/fisiología
16.
Adv Healthc Mater ; 12(20): e2300991, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37290055

RESUMEN

Today's living world is enriched with a myriad of natural biological designs, shaped by billions of years of evolution. Unraveling the construction rules of living organisms offers the potential to create new materials and systems for biomedicine. From the close examination of living organisms, several concepts emerge: hierarchy, pattern repetition, adaptation, and irreducible complexity. All these aspects must be tackled to develop transformative materials with lifelike behavior. This perspective article highlights recent progress in the development of transformative biohybrid systems for applications in the fields of tissue regeneration and biomedicine. Advances in computational simulations and data-driven predictions are also discussed. These tools enable the virtual high-throughput screening of implant design and performance before committing to fabrication, thus reducing the development time and cost of biomimetic and biohybrid constructs. The ongoing progress of imaging methods also constitutes an essential part of this matter in order to validate the computation models and enable longitudinal monitoring. Finally, the current challenges of lifelike biohybrid materials, including reproducibility, ethical considerations, and translation, are discussed. Advances in the development of lifelike materials will open new biomedical horizons, where perhaps what is currently envisioned as science fiction will become a science-driven reality in the future.


Asunto(s)
Prótesis e Implantes , Ingeniería de Tejidos , Reproducibilidad de los Resultados , Biomimética/métodos
17.
Adv Healthc Mater ; : e2302957, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37988182

RESUMEN

Microporous annealed particle (MAP) scaffolds are investigated for their application as injectable 3D constructs in the field of regenerative medicine and tissue repair. While available MAP scaffolds provide a stable interlinked matrix of microgels for cell culture, the infiltration depth and space for cells to grow inside the scaffolds is pre-determined by the void fraction during the assembly. In the case of MAP scaffolds fabricated from interlinked spherical microgels, a cellularity gradient can be observed with the highest cell density on the scaffold surface. Additionally, the interlinked microgel network limits the ability of cells to remodel their environment, which contradicts native tissue dynamics. In this work, a cell-induced interlinking method for MAP scaffold formation is established, which avoids the necessity of chemical crosslinkers and pre-engineered pores to achieve micro- or macropores in these 3D frameworks. This method enables cells to self-organize with microgels into dynamic tissue constructs, which can be further controlled by altering the microgel properties, the cell/microgel ratio, and well shape. To form a cell-induced interlinked scaffold, the cells are mixed with dextran-based microgels and function as a glue between the microgels, resulting in a more homogenous cell distribution throughout the scaffold with efficient cell-cell interactions.

18.
Adv Healthc Mater ; 12(18): e2300695, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37248777

RESUMEN

Therapeutic antibodies are the key treatment option for various cytokine-mediated diseases, such as rheumatoid arthritis, psoriasis, and inflammatory bowel disease. However, systemic injection of these antibodies can cause side effects and suppress the immune system. Moreover, clearance of therapeutic antibodies from the blood is limiting their efficacy. Here, water-swollen microgels are produced with a size of 25 µm using droplet-based microfluidics. The microgels are functionalized with TNFα antibodies to locally scavenge the pro-inflammatory cytokine TNFα. Homogeneous distribution of TNFα-antibodies is shown throughout the microgel network and demonstrates specific antibody-antigen binding using confocal microscopy and FLIM-FRET measurements. Due to the large internal accessibility of the microgel network, its capacity to bind TNFα is extremely high. At a TNFα concentration of 2.5 µg mL-1 , the microgels are able to scavenge 88% of the cytokine. Cell culture experiments reveal the therapeutic potential of these microgels by protecting HT29 colorectal adenocarcinoma cells from TNFα toxicity and resulting in a significant reduction of COX II and IL8 production of the cells. When the microgels are incubated with stimulated human macrophages, to mimic the in vivo situation of inflammatory bowel disease, the microgels scavenge almost all TNFα that is produced by the cells.


Asunto(s)
Microgeles , Humanos , Citocinas , Factor de Necrosis Tumoral alfa , Anticuerpos , Células HT29
19.
ACS Appl Mater Interfaces ; 15(36): 42241-42250, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37650520

RESUMEN

Nanofibrous scaffolds are widely investigated for tendon tissue engineering due to their porous structure, high flexibility, and the ability to guide cells in a preferred direction. Previous research has shown that providing a microenvironment similar to in vivo settings improves tissue regeneration. Therefore, in this work, ingenious multicomponent nanoyarn scaffolds that mimic the fibrillar and tubular structures of tendons are developed for the first time through electrospinning and bundling nanoyarns followed by electrospinning of a nanofibrous shell around the bundle. Multicomponent nanoyarn scaffolds out of poly(ε-caprolactone) with varying porosity, density, and diameter were successfully produced by coelectrospinning with water-soluble poly(2-ethyl-2-oxazoline) as a sacrificial component. The diameter and fiber orientation of the nanoyarns were successfully tuned based on parameter-morphology models obtained by the design of experiments. Cyclic bending tests were performed, indicating that the flexibility of the multicomponent nanoyarn scaffolds depends on the morphology and can be tuned through controlling the number of nanoyarns in the bundle and the porosity. Indirect and direct cell culture tests using mouse and equine tendon cells revealed excellent cytocompatibility of the nanofibrous products and demonstrated the potential of the nanoyarns to guide the growing cells along the nanofiber direction, which is crucial for tendon tissue engineering.


Asunto(s)
Técnicas de Cultivo de Célula , Nanofibras , Animales , Caballos , Ratones , Citoesqueleto , Poli A , Tendones
20.
Adv Healthc Mater ; 12(20): e2301030, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37311209

RESUMEN

Recreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties. Using nature as an inspiration, scientists are creating materials that incorporate specific biological processes observed during human organogenesis and tissue regeneration. This article presents the reader with state-of-the-art developments in the field of in vitro tissue engineering and the challenges related to the design, production, and translation of these transformative materials. Advances regarding (stem) cell sources, expansion, and differentiation, and how novel responsive materials, automated and large-scale fabrication processes, culture conditions, in situ monitoring systems, and computer simulations are required to create functional human tissue models that are relevant and efficient for drug discovery, are described. This paper illustrates how these different technologies need to converge to generate in vitro life-like human tissue models that provide a platform to answer health-based scientific questions.


Asunto(s)
Células Madre , Ingeniería de Tejidos , Humanos , Descubrimiento de Drogas , Sistemas de Liberación de Medicamentos , Materiales Biocompatibles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA