Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 63, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528526

RESUMEN

Efficient predictive biomarkers are needed for immune checkpoint inhibitor (ICI)-based immunotherapy in non-small cell lung cancer (NSCLC). Testing the predictive value of single nucleotide polymorphisms (SNPs) in programmed cell death 1 (PD-1) or its ligand 1 (PD-L1) has shown contrasting results. Here, we aim to validate the predictive value of PD-L1 SNPs in advanced NSCLC patients treated with ICIs as well as to define the molecular mechanisms underlying the role of the identified SNP candidate. rs822336 efficiently predicted response to anti-PD-1/PD-L1 immunotherapy in advanced non-oncogene addicted NSCLC patients as compared to rs2282055 and rs4143815. rs822336 mapped to the promoter/enhancer region of PD-L1, differentially affecting the induction of PD-L1 expression in human NSCLC cell lines as well as their susceptibility to HLA class I antigen matched PBMCs incubated with anti-PD-1 monoclonal antibody nivolumab. The induction of PD-L1 expression by rs822336 was mediated by a competitive allele-specificity binding of two identified transcription factors: C/EBPß and NFIC. As a result, silencing of C/EBPß and NFIC differentially regulated the induction of PD-L1 expression in human NSCLC cell lines carrying different rs822336 genotypes. Analysis by binding microarray further validated the competitive allele-specificity binding of C/EBPß and NFIC to PD-L1 promoter/enhancer region based on rs822336 genotype in human NSCLC cell lines. These findings have high clinical relevance since identify rs822336 and induction of PD-L1 expression as novel biomarkers for predicting anti-PD-1/PD-L1-based immunotherapy in advanced NSCLC patients.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Factores de Transcripción NFI/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
2.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446229

RESUMEN

Climate change and globalization have raised the risk of vector-borne disease (VBD) introduction and spread in various European nations in recent years. In Italy, viruses carried by tropical vectors have been shown to cause viral encephalitis, one of the symptoms of arboviruses, a spectrum of viral disorders spread by arthropods such as mosquitoes and ticks. Arboviruses are currently causing alarm and attention, and the World Health Organization (WHO) has released recommendations to adopt essential measures, particularly during the hot season, to restrict the spreading of the infectious agents among breeding stocks. In this scenario, rapid analysis systems are required, because they can quickly provide information on potential virus-host interactions, the evolution of the infection, and the onset of disabling clinical symptoms, or serious illnesses. Such systems include bioinformatics approaches integrated with molecular evaluation. Viruses have co-evolved different strategies to transcribe their own genetic material, by changing the host's transcriptional machinery, even in short periods of time. The introduction of genetic alterations, particularly in RNA viruses, results in a continuous adaptive fight against the host's immune system. We propose an in silico pipeline method for performing a comprehensive motif analysis (including motif discovery) on entire genome sequences to uncover viral sequences that may interact with host RNA binding proteins (RBPs) by interrogating the database of known RNA binding proteins, which play important roles in RNA metabolism and biological processes. Indeed, viral RNA sequences, able to bind host RBPs, may compete with cellular RNAs, altering important metabolic processes. Our findings suggest that the proposed in silico approach could be a useful and promising tool to investigate the complex and multiform clinical manifestations of viral encephalitis, and possibly identify altered metabolic pathways as targets of pharmacological treatments and innovative therapeutic protocols.


Asunto(s)
Arbovirus , Encefalitis Viral , Animales , Humanos , Arbovirus/genética , Secuencia de Bases , Mosquitos Vectores , ARN Viral/genética , Encefalitis Viral/genética , Proteínas de Unión al ARN/genética
3.
J Cell Biochem ; 123(1): 91-101, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741483

RESUMEN

Hypoxia and angiogenesis in solid tumors are often strictly linked to the development of fibrotic tissues, a detrimental event that compromises the antitumor immunity. As a consequence, tumor aggressiveness and poor patient prognosis relate to higher incidence of tissue fibrosis and stromal stiffness. The molecular pathways through which normal fibroblasts are converted in cancer-associated fibroblasts (CAFs) have a central role in the onset of fibrosis in tumor stroma, thus emerging as a strategic target of novel therapeutic approaches for cancer disease. Several studies addressed the role of BAG3 in sustaining growth and survival of cancer cell and also shed light on the different mechanisms in which the intracellular protein is involved. More recently, new pieces of evidence revealed a pivotal role of extracellular BAG3 in pro-tumor cell signaling in the tumor microenvironment, as well as its involvement in the development of fibrosis in tumor tissues. Here we report further data showing the presence of the BAG3 receptor (Interferon-induced transmembrane protein [IFITM]-2) on the plasma membrane of normal dermal fibroblasts and the activity of BAG3 as a factor able to induce the expression of α-smooth muscle actin and the phosphorylation of AKT and focal adhesion kinase, that sustain CAF functions in tumor microenvironment. Furthermore, in agreement with these findings, bag3 gene expression has been analyzed by high throughput RNA sequencing databases from patients-derived xenografts. A strong correlation between bag3 gene expression and patients' survival was found in several types of fibrotic tumors. The results obtained provide encouraging data that identify BAG3 as a promising therapeutic target to counteract fibrosis in tumors.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/farmacología , Adenocarcinoma/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/farmacología , Fibroblastos Asociados al Cáncer/metabolismo , Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Neoplasias Hepáticas/genética , Mesotelioma/genética , Neoplasias Pancreáticas/genética , Transducción de Señal/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Proteínas de la Membrana/metabolismo , Mesotelioma/metabolismo , Mesotelioma/patología , Ratones , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Fosforilación/efectos de los fármacos , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Cell Biochem ; 123(1): 65-76, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741485

RESUMEN

Pancreatic ductal adenoma carcinoma (PDAC) is considered one of the deadliest solid cancers as it is usually diagnosed in advanced stages and has a poor response to treatment. The enormous effort made in the last 2 decades in the oncology field has not led to significant progress in improving early diagnosis or therapy for PDAC. The stroma of PDAC plays an active role in tumour initiation and progression and includes immune cells and stromal cells. We previously reported that Bcl2-associated athanogene (BAG3) secreted by PDAC cells activates tumour-associated macrophages to promote tumour growth. The disruption of this tumour-stroma axis by the anti-BAG3 H2L4 therapeutic antibody is sufficient to delay tumour growth and limit metastatic spreading in different PDAC preclinical models. In the present study, we examined the role of BAG3 to activate human fibroblasts (HF) in releasing cytokines capable of supporting tumour progression. Treatment of fibroblasts with recombinant BAG3 induced important changes in the organisation of the cytoskeleton of these cells and stimulated the production of interleukin-6, monocyte chemoattractant protein-1/C-C motif chemokine ligand 2, and hepatocyte growth factor. Specifically, we observed that BAG3 triggered a depolymerisation of microtubules at the periphery of the cell while they were conserved in the perinuclear area. Conversely, the vimentin-based intermediate filaments increased and spread to the edges of the cells. Finally, the conditioned medium (CM) collected from BAG3-treated HF promoted the survival, proliferation, and migration of the PDAC cells. Blocking of the PDAC-fibroblast axis by the H2L4 therapeutic anti-BAG3 antibody, resulted in inhibition of cytokine release and, consequently, the inhibition of the migratory phenotype conferred by the CM to PDAC cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/farmacología , Proteínas Reguladoras de la Apoptosis/farmacología , Carcinoma Ductal Pancreático/metabolismo , Movimiento Celular/efectos de los fármacos , Citocinas/metabolismo , Citocinas/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Neoplasias Pancreáticas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Humanos , Neoplasias Pancreáticas/patología , Proteínas Recombinantes/farmacología , Células Sf9 , Spodoptera
5.
J Cell Physiol ; 236(4): 2616-2619, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32810284

RESUMEN

Diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] is a substituted urea herbicide, carcinogenic for the rat urinary bladder. It has been hypothesized that Diuron cytotoxicity, resulting in regenerative proliferation, leads to urothelial hyperplasia and, finally, to bladder tumors, but molecular mechanisms of carcinogenesis have not still fully investigated. Here, we report the results of a study aimed at verifying the involvement of BAG3, an intracellular protein expressed in several tumors, in the Diuron-induced carcinogenesis. For this purpose, we analyzed the effect of Diuron on human primary urothelial cells and on human dermal fibroblasts. We found that while high concentrations of Diuron have a cytotoxic effect in human primary urothelial cells, in the same cells, noncytotoxic concentrations of the herbicide induce BAG3 expression. These findings show that BAG3 is a molecular target of Diuron and unravel the possible involvement of BAG3 protein in bladder carcinogenesis induced by the herbicide. In addition, these results suggest that BAG3 might be a potential early biomarker of damage induced by chronic exposure to Diuron.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinógenos/toxicidad , Diurona/toxicidad , Herbicidas/toxicidad , Urotelio/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Células Cultivadas , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Masculino , Regulación hacia Arriba , Urotelio/metabolismo , Urotelio/patología
6.
Br J Cancer ; 125(6): 789-797, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34099896

RESUMEN

BAG3, a member of the BAG family of co-chaperones, is a multidomain protein with a role in several cellular processes, including the control of apoptosis, autophagy and cytoskeletal dynamics. The expression of bag3 is negligible in most cells but can be induced by stress stimuli or malignant transformation. In some tumours, BAG3 has been reported to promote cell survival and resistance to therapy. The expression of BAG3 has been documented in ovarian, endometrial and cervical cancers, and studies have revealed biochemical and functional connections of BAG3 with proteins involved in the survival, invasion and resistance to therapy of these malignancies. BAG3 expression has also been shown to correlate with the grade of dysplasia in squamous intraepithelial lesions of the uterine cervix. Some aspects of BAG3 activity, such as its biochemical and functional interaction with the human papillomavirus proteins, could help in our understanding of the mechanisms of oncogenesis induced by the virus. This review aims to highlight the potential value of BAG3 studies in the field of gynaecological tumours.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Resistencia a Antineoplásicos , Neoplasias de los Genitales Femeninos/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Neoplasias de los Genitales Femeninos/tratamiento farmacológico , Neoplasias de los Genitales Femeninos/patología , Humanos , Clasificación del Tumor , Invasividad Neoplásica , Análisis de Supervivencia
7.
Semin Cell Dev Biol ; 78: 85-92, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28864347

RESUMEN

BAG3 is a multifunctional protein that can bind to heat shock proteins (Hsp) 70 through its BAG domain and to other partners through its WW domain, proline-rich (PXXP) repeat and IPV (Ile-Pro-Val) motifs. Its intracellular expression can be induced by stressful stimuli, while is constitutive in skeletal muscle, cardiac myocytes and several tumour types. BAG3 can modulate the levels, localisation or activity of its partner proteins, thereby regulating major cell pathways and functions, including apoptosis, autophagy, mechanotransduction, cytoskeleton organisation, motility. A secreted form of BAG3 has been identified in studies on pancreatic ductal adenocarcinoma (PDAC). Secreted BAG3 can bind to a specific receptor, IFITM2, expressed on macrophages, and induce the release of factors that sustain tumour growth and the metastatic process. BAG3 neutralisation therefore appears to constitute a novel potential strategy in the therapy of PDAC and, possibly, other tumours.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma Ductal Pancreático/patología , Proteínas HSP70 de Choque Térmico/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/genética , Autofagia/fisiología , Biomarcadores de Tumor/sangre , Carcinoma Ductal Pancreático/genética , Humanos , Macrófagos/metabolismo , Mecanotransducción Celular/fisiología , Proteínas de la Membrana/metabolismo , Neoplasias Pancreáticas/genética , Comunicación Paracrina/fisiología , Dominios Proteicos/fisiología
8.
Acta Obstet Gynecol Scand ; 99(1): 99-104, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31444794

RESUMEN

INTRODUCTION: Bcl-2-associated athanogene 3 (BAG3) is a protein involved in apoptosis and stress response, which is overexpressed in invasive cervical cancer. However, nothing is known about BAG3 expression in precancerous lesions of the uterine cervix. We aimed to evaluate the expression of BAG3 in cervical intraepithelial neoplasia/squamous intraepithelial lesions (CIN/SIL). MATERIAL AND METHODS: Forty patients (16 CIN1/L-SIL, 11 CIN2/H-SIL and 13 CIN3/H-SIL) were assessed by immunohistochemistry for BAG3. The intensity of BAG3 expression was categorized as null, minimal, weak, moderate or strong. The association of BAG2 intensity of expression with the grade of dysplasia was assessed using Chi-square test (significant P value <0.05). RESULTS: In all normal controls, BAG3 expression was negative. In L-SIL specimens, BAG3 expression was confined to the basal third of the epithelium, with an intensity minimal in nine cases (56.3%), weak in six (37.5%) and strong in one (6.3%). In H-SIL specimens, BAG3 expression involved also the two upper thirds of the epithelium, with an intensity moderate in 13 cases (54.2%; 8 CIN2 and 5 CIN3) and strong in 11 cases (45.8%; 3 CIN2 and 8 CIN3). The distribution of BAG3 expression correlated perfectly with the grade of dysplasia (P = 0.0); a moderate/strong expression of BAG3 was significantly associated with H-SIL (P < 0.0001), with no significant difference between CIN2 and CIN3 (P = 0.1228). CONCLUSIONS: In CIN/SIL, both distribution and intensity of BAG3 expression correlate directly with the grade of dysplasia, supporting the involvement of BAG3 in all phases of cervical carcinogenesis and its possible diagnostic and prognostic role in cervical premalignant lesions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Lesiones Intraepiteliales Escamosas/metabolismo , Displasia del Cuello del Útero/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Femenino , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Clasificación del Tumor , Lesiones Intraepiteliales Escamosas/patología , Neoplasias del Cuello Uterino/patología , Displasia del Cuello del Útero/patología
13.
medRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38370698

RESUMEN

Bicuspid Aortic Valve (BAV) is the most common adult congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that early onset complications of BAV (EBAV) are driven by specific impactful genetic variants. We analyzed whole exome sequences (WES) to identify rare coding variants that contribute to BAV disease in 215 EBAV families. Predicted pathogenic variants of causal genes were present in 111 EBAV families (51% of total), including genes that cause BAV (8%) or heritable thoracic aortic disease (HTAD, 17%). After appropriate filtration, we also identified 93 variants in 26 novel genes that are associated with autosomal dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants contribute to early onset complications of BAV disease.

14.
medRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559132

RESUMEN

Bicuspid aortic valve (BAV) is the most common congenital heart malformation in adults but can also cause childhood-onset complications. In multicenter study, we found that adults who experience significant complications of BAV disease before age 30 are distinguished from the majority of BAV cases that manifest after age 50 by a relatively severe clinical course, with higher rates of surgical interventions, more frequent second interventions, and a greater burden of congenital heart malformations. These observations highlight the need for prompt recognition, regular lifelong surveillance, and targeted interventions to address the significant health burdens of patients with early onset BAV complications.

15.
Biochim Biophys Acta ; 1826(2): 407-14, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22579960

RESUMEN

Dendritic cells (DCs) are immunological sentinels of the organism acting as antigen-presenting cells (APC) and are critical for induction of innate and adaptive immunity. Traditionally they are divided in myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs), a rare population of circulating cells that selectively express Toll-like receptors (TLR) 7 and TLR9 and have the capacity to produce large amounts of type I interferons (IFNs) in response to pathogenic agents or danger signals. It has been demonstrated that pDCs can coordinate events during the course of viral infections, allergic and autoimmune diseases and cancer. Through the production of type I IFNs, pDCs initiate protective immunity by activating classical DCs, T cells, natural killer cells and B cells. Upon activation, pDCs also differentiate into mature DCs and may contribute to the contraction of T-cell response. Human pDCs preferentially express immunoglobulin-like transcript 7 (ILT7; LILRA4), which couples with a signaling adapter to activate a prominent immune-receptor tyrosine-based activation motif (ITAM)-mediated signaling pathway. The interaction between ILT7 and bone marrow stromal cell antigen 2 (BST2, CD317) assures an appropriate TLR response by pDCs during viral infections and likely participates in pDCs tumor crosstalk. Moreover these cells seem to play a crucial role in the initiation of the pathological process of autoimmune diseases such as lupus or psoriasis. Despite the fact that their function within a tumor context is still controversial they represent an attractive target for therapeutic manipulation of the immune system to elicit a powerful immune response against tumor antigens in combination with other therapies.


Asunto(s)
Células Dendríticas/fisiología , Neoplasias/inmunología , Animales , Ensayos Clínicos como Asunto , Humanos , Neoplasias/terapia , Fenotipo , Receptores Inmunológicos/fisiología , Transducción de Señal , Receptores Toll-Like/fisiología
16.
Am J Pathol ; 181(5): 1524-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22944597

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly cancers, being the fourth leading cause of cancer-related deaths. Long-term survival reaching 15% is achieved in less than 5% of patients who undergo surgery, and median survival is only 6 months in those with inoperable lesions. A deeper understanding of PDAC biologic characteristics as well as novel prognostic markers are therefore required to improve outcomes. Herein we report that BAG3, a protein with recognized anti-apoptotic activity, was expressed in 346 PDACs analyzed, but was not expressed in the surrounding nonneoplastic tissue. In a cohort of 66 patients who underwent radical resection (R0), survival was significantly shorter in patients with high BAG3 expression (median, 12 months) than in those with low BAG3 expression (median, 23 months) (P = 0.001). Furthermore, we report that BAG3 expression in PDAC-derived cell lines protects from apoptosis and confers resistance to gemcitabine, offering a partial explanation for the survival data. Our results indicate that BAG3 has a relevant role in PDAC biology, and suggest that BAG3 expression level might be a potential marker for prediction of patient outcome.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Apoptosis , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Adenocarcinoma/tratamiento farmacológico , Anciano , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Regulación hacia Abajo/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Neoplasias Pancreáticas/tratamiento farmacológico , Modelos de Riesgos Proporcionales , Análisis de Supervivencia , Gemcitabina
17.
Proc Natl Acad Sci U S A ; 107(16): 7497-502, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20368414

RESUMEN

BAG3, a member of the BAG family of heat shock protein (HSP) 70 cochaperones, is expressed in response to stressful stimuli in a number of normal cell types and constitutively in a variety of tumors, including pancreas carcinomas, lymphocytic and myeloblastic leukemias, and thyroid carcinomas. Down-regulation of BAG3 results in cell death, but the underlying molecular mechanisms are still elusive. Here, we investigated the molecular mechanism of BAG3-dependent survival in human osteosarcoma (SAOS-2) and melanoma (M14) cells. We show that bag3 overexpression in tumors promotes survival through the NF-kappaB pathway. Indeed, we demonstrate that BAG3 alters the interaction between HSP70 and IKKgamma, increasing availability of IKKgamma and protecting it from proteasome-dependent degradation; this, in turn, results in increased NF-kappaB activity and survival. These results identify bag3 as a potential target for anticancer therapies in those tumors in which this gene is constitutively expressed. As a proof of principle, we show that treatment of a mouse xenograft tumor model with bag3siRNA-adenovirus that down-regulates bag3 results in reduced tumor growth and increased animal survival.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación Neoplásica de la Expresión Génica , Quinasa I-kappa B/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis , Proteínas Reguladoras de la Apoptosis , Línea Celular Tumoral , Femenino , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Modelos Biológicos , FN-kappa B/metabolismo , ARN Interferente Pequeño/metabolismo
18.
Cancers (Basel) ; 15(19)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37835519

RESUMEN

Pancreatic Ductal Adenocarcinoma (PDAC) is a ravaging disease with a poor prognosis, requiring a more detailed understanding of its biology to foster the development of effective therapies. The unsatisfactory results of treatments targeting cell proliferation and its related mechanisms suggest a shift in focus towards the inflammatory tumor microenvironment (TME). Here, we discuss the role of cancer-secreted proteins in the complex TME tumor-stroma crosstalk, shedding lights on druggable molecular targets for the development of innovative, safer and more efficient therapeutic strategies.

19.
Antiviral Res ; 211: 105546, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36669656

RESUMEN

The early steps of viral infection involve protein complexes and structural lipid rearrangements which characterize the peculiar strategies of each virus to invade permissive host cells. Members of the human immune-related interferon-induced transmembrane (IFITM) protein family have been described as inhibitors of the entry of a broad range of viruses into the host cells. Recently, it has been shown that SARS-CoV-2 is able to hijack IFITM2 for efficient infection. Here, we report the characterization of a newly generated specific anti-IFITM2 mAb able to impair Spike-mediated internalization of SARS-CoV-2 in host cells and, consequently, to reduce the SARS-CoV-2 cytopathic effects and syncytia formation. Furthermore, the anti-IFITM2 mAb reduced HSVs- and RSV-dependent cytopathic effects, suggesting that the IFITM2-mediated mechanism of host cell invasion might be shared with other viruses besides SARS-CoV-2. These results show the specific role of IFITM2 in mediating viral entry into the host cell and its candidacy as a cell target for antiviral therapeutic strategies.


Asunto(s)
COVID-19 , Internalización del Virus , Humanos , SARS-CoV-2/metabolismo , Antígenos de Diferenciación/metabolismo , Anticuerpos Monoclonales , Glicoproteína de la Espiga del Coronavirus/metabolismo , Fusión de Membrana , Proteínas de la Membrana
20.
JCO Clin Cancer Inform ; 7: e2200160, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36913644

RESUMEN

PURPOSE: We determined whether a large, multianalyte panel of circulating biomarkers can improve detection of early-stage pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS: We defined a biologically relevant subspace of blood analytes on the basis of previous identification in premalignant lesions or early-stage PDAC and evaluated each in pilot studies. The 31 analytes that met minimum diagnostic accuracy were measured in serum of 837 subjects (461 healthy, 194 benign pancreatic disease, and 182 early-stage PDAC). We used machine learning to develop classification algorithms using the relationship between subjects on the basis of their changes across the predictors. Model performance was subsequently evaluated in an independent validation data set from 186 additional subjects. RESULTS: A classification model was trained on 669 subjects (358 healthy, 159 benign, and 152 early-stage PDAC). Model evaluation on a hold-out test set of 168 subjects (103 healthy, 35 benign, and 30 early-stage PDAC) yielded an area under the receiver operating characteristic curve (AUC) of 0.920 for classification of PDAC from non-PDAC (benign and healthy controls) and an AUC of 0.944 for PDAC versus healthy controls. The algorithm was then validated in 146 subsequent cases presenting with pancreatic disease (73 benign pancreatic disease and 73 early- and late-stage PDAC cases) and 40 healthy control subjects. The validation set yielded an AUC of 0.919 for classification of PDAC from non-PDAC and an AUC of 0.925 for PDAC versus healthy controls. CONCLUSION: Individually weak serum biomarkers can be combined into a strong classification algorithm to develop a blood test to identify patients who may benefit from further testing.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patología , Adenocarcinoma/diagnóstico , Biomarcadores de Tumor , Estudios de Casos y Controles , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA