Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Antimicrob Chemother ; 71(8): 2089-99, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27090632

RESUMEN

OBJECTIVES: A promising curative approach for HIV is to use designer endonucleases that bind and cleave specific target sequences within latent genomes, resulting in mutations that render the virus replication incompetent. We developed a mathematical model to describe the expression and activity of endonucleases delivered to HIV-infected cells using engineered viral vectors in order to guide dose selection and predict therapeutic outcomes. METHODS: We developed a mechanistic model that predicts the number of transgene copies expressed at a given dose in individual target cells from fluorescence of a reporter gene. We fitted the model to flow cytometry datasets to determine the optimal vector serotype, promoter and dose required to achieve maximum expression. RESULTS: We showed that our model provides a more accurate measure of transduction efficiency compared with gating-based methods, which underestimate the percentage of cells expressing reporter genes. We identified that gene expression follows a sigmoid dose-response relationship and that the level of gene expression saturation depends on vector serotype and promoter. We also demonstrated that significant bottlenecks exist at the level of viral uptake and gene expression: only ∼1 in 220 added vectors enter a cell and, of these, depending on the dose and promoter used, between 1 in 15 and 1 in 1500 express transgene. CONCLUSIONS: Our model provides a quantitative method of dose selection and optimization that can be readily applied to a wide range of other gene therapy applications. Reducing bottlenecks in delivery will be key to reducing the number of doses required for a functional cure.


Asunto(s)
Endonucleasas/farmacología , Endonucleasas/farmacocinética , Terapia Genética/métodos , Vectores Genéticos/farmacología , Vectores Genéticos/farmacocinética , Infecciones por VIH/terapia , Endonucleasas/administración & dosificación , Citometría de Flujo , Fluorescencia , Genes Reporteros , Vectores Genéticos/administración & dosificación , Humanos , Modelos Teóricos
3.
Hum Gene Ther ; 32(1-2): 96-112, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32998579

RESUMEN

Adeno-associated virus (AAV) vectors such as AAV6, which shows tropism for primary human CD4+ T cells in vitro, are being explored for delivery of anti-HIV therapeutic modalities in vivo. However, pre-existing immunity and sequestration in nontarget organs can significantly hinder their performance. To overcome these challenges, we investigated whether immunosuppression would allow gene delivery by AAV6 or targeted AAV6 derivatives in seropositive rhesus macaques. Animals were immune suppressed with rapamycin before intravenous (IV) or subcutaneous (SC) delivery of AAV, and we monitored vector biodistribution, gene transfer, and safety. Macaques received phosphate-buffered saline, AAV6 alone, or an equal dose of AAV6 and an AAV6-55.2 vector retargeted to CD4 through a direct ankyrin repeat protein (DARPin). AAV6 and AAV6-55.2 vector genomes were found in peripheral blood mononuclear cells and most organs up to 28 days postadministration, with the highest levels seen in liver, spleen, lymph nodes (LNs), and muscle, suggesting that retargeting did not prevent vector sequestration. Despite vector genome detection, gene expression from AAV6-55.2 was not detected in any tissue. SC injection of AAV6 facilitated efficient gene expression in muscle adjacent to the injection site, plus low-level gene expression in spleen, LNs, and liver, whereas gene expression following IV injection of AAV6 was predominantly seen in the spleen. AAV vectors were well tolerated, although elevated liver enzymes were detected in three of four AAV-treated animals 14 days after rapamycin withdrawal. One SC-injected animal had muscle inflammation proximal to the injection site, plus detectable T cell responses against transgene and AAV6 capsid at study finish. Overall, our data suggest that rapamycin treatment may offer a possible strategy to express anti-HIV therapeutics such as broadly neutralizing antibodies from muscle. This study provides important safety and efficacy data that will aid study design for future anti-HIV gene therapies.


Asunto(s)
Dependovirus , Vectores Genéticos , Animales , Dependovirus/genética , Proteínas de Repetición de Anquirina Diseñadas , Vectores Genéticos/genética , Humanos , Leucocitos Mononucleares , Macaca mulatta , Sirolimus/uso terapéutico , Distribución Tisular
4.
Mol Ther Methods Clin Dev ; 20: 258-275, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33473359

RESUMEN

Chronic hepatitis B virus (HBV) infection is a major public health problem. New treatment approaches are needed because current treatments do not target covalently closed circular DNA (cccDNA), the template for HBV replication, and rarely clear the virus. We harnessed adeno-associated virus (AAV) vectors and CRISPR-Staphylococcus aureus (Sa)Cas9 to edit the HBV genome in liver-humanized FRG mice chronically infected with HBV and receiving entecavir. Gene editing was detected in livers of five of eight HBV-specific AAV-SaCas9-treated mice, but not control mice, and mice with detectable HBV gene editing showed higher levels of SaCas9 delivery to HBV+ human hepatocytes than those without gene editing. HBV-specific AAV-SaCas9 therapy significantly improved survival of human hepatocytes, showed a trend toward decreasing total liver HBV DNA and cccDNA, and was well tolerated. This work provides evidence for the feasibility and safety of in vivo gene editing for chronic HBV infections, and it suggests that with further optimization, this approach may offer a plausible way to treat or even cure chronic HBV infections.

5.
Nat Commun ; 11(1): 4148, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811834

RESUMEN

We evaluate gene editing of HSV in a well-established mouse model, using adeno-associated virus (AAV)-delivered meganucleases, as a potentially curative approach to treat latent HSV infection. Here we show that AAV-delivered meganucleases, but not CRISPR/Cas9, mediate highly efficient gene editing of HSV, eliminating over 90% of latent virus from superior cervical ganglia. Single-cell RNA sequencing demonstrates that both HSV and individual AAV serotypes are non-randomly distributed among neuronal subsets in ganglia, implying that improved delivery to all neuronal subsets may lead to even more complete elimination of HSV. As predicted, delivery of meganucleases using a triple AAV serotype combination results in the greatest decrease in ganglionic HSV loads. The levels of HSV elimination observed in these studies, if translated to humans, would likely significantly reduce HSV reactivation, shedding, and lesions. Further optimization of meganuclease delivery and activity is likely possible, and may offer a pathway to a cure for HSV infection.


Asunto(s)
Desoxirribonucleasas/genética , Dependovirus/genética , Infecciones del Ojo/terapia , Edición Génica/métodos , Herpes Simple/terapia , Herpesvirus Humano 1/genética , Latencia del Virus/genética , Animales , Sistemas CRISPR-Cas/genética , Células Cultivadas , Chlorocebus aethiops , Infecciones del Ojo/genética , Infecciones del Ojo/virología , Femenino , Células HEK293 , Herpes Simple/genética , Herpesvirus Humano 1/patogenicidad , Humanos , Ratones , Neuronas/metabolismo , Neuronas/virología , RNA-Seq , Análisis de la Célula Individual , Ganglio Cervical Superior/metabolismo , Ganglio Cervical Superior/virología , Células Vero
6.
ACS Infect Dis ; 4(6): 871-880, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29522311

RESUMEN

Chronic viral infections remain a major public health issue affecting millions of people worldwide. Highly active antiviral treatments have significantly improved prognosis and infection-related morbidity and mortality but have failed to eliminate persistent viral forms. Therefore, new strategies to either eradicate or control these viral reservoirs are paramount to allow patients to stop antiretroviral therapy and realize a cure. Viral genome disruption based on gene editing by programmable endonucleases is one promising curative gene therapy approach. Recent findings on RNA-guided human immunodeficiency virus 1 (HIV-1) genome cleavage by Cas9 and other gene-editing enzymes in latently infected cells have shown high levels of site-specific genome disruption and potent inhibition of virus replication. However, HIV-1 can readily develop resistance to genome editing at a single antiviral target site. Current data suggest that cellular repair associated with DNA double-strand breaks can accelerate the emergence of resistance. On the other hand, a combination antiviral target strategy can exploit the same repair mechanism to functionally cure HIV-1 infection in vitro while avoiding the development of resistance. This perspective summarizes recent findings on the biology of resistance to genome editing and discusses the significance of viral genetic diversity on the application of gene editing strategies toward cure.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma Viral , Virosis/terapia , Virosis/virología , Virus/genética , Animales , Portador Sano , Terapia Combinada , Farmacorresistencia Viral , Terapia Genética , Variación Genética , Humanos , Cuasiespecies/genética , ARN Guía de Kinetoplastida , ARN Viral , Replicación Viral/genética , Virus/efectos de los fármacos
7.
Sci Rep ; 7(1): 927, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28424485

RESUMEN

The ability to genetically manipulate trigeminal ganglion (TG) neurons would be useful in the study of the craniofacial nervous system and latent alphaherpesvirus infections. We investigated adeno-associated virus (AAV) vectors for gene delivery to the TG after intradermal whiskerpad delivery in mice. We demonstrated that AAV vectors of serotypes 1, 7, 8, and 9 trafficked from the whiskerpad into TG neurons and expressed transgenes within cell bodies and axons of sensory neurons in all three branches of the TG. Gene expression was highest with AAV1, and steadily increased over time up to day 28. Both constitutive and neuronal-specific promoters were able to drive transgene expression in TG neurons. Levels of vector genomes in the TG increased with input dose, and multiple transgenes could be co-delivered to TG neurons by separate AAV vectors. In conclusion, AAV1 vectors are suitable for gene delivery to TG sensory neurons following intradermal whiskerpad injection.


Asunto(s)
Dependovirus/genética , Células Receptoras Sensoriales/virología , Transgenes , Ganglio del Trigémino/virología , Animales , Células Cultivadas , Chlorocebus aethiops , Dependovirus/inmunología , Terapia Genética , Vectores Genéticos/administración & dosificación , Células HEK293 , Humanos , Inyecciones Intradérmicas , Ratones , Modelos Animales , Serogrupo , Transducción Genética , Células Vero
8.
Antiviral Res ; 126: 90-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26718067

RESUMEN

Incurable chronic viral infections are a major cause of morbidity and mortality worldwide. One potential approach to cure persistent viral infections is via the use of targeted endonucleases. Nevertheless, a potential concern for endonuclease-based antiviral therapies is the emergence of treatment resistance. Here we detect for the first time an endonuclease-resistant infectious virus that is found with high frequency after antiviral endonuclease therapy. While testing the activity of HIV pol-specific zinc finger nucleases (ZFNs) alone or in combination with three prime repair exonuclease 2 (Trex2), we identified a treatment-resistant and infectious mutant virus that was derived from a ZFN-mediated disruption of reverse transcriptase (RT). Although gene disruption of HIV protease, RT and integrase could inhibit viral replication, a chance single amino acid insertion within the thumb domain of RT produced a virus that could actively replicate. The endonuclease-resistant virus could replicate in primary CD4(+) T cells, but remained susceptible to treatment with antiretroviral RT inhibitors. When secondary ZFN-derived mutations were introduced into the mutant virus's RT or integrase domains, replication could be abolished. Our observations suggest that caution should be exercised during endonuclease-based antiviral therapies; however, combination endonuclease therapies may prevent the emergence of resistance.


Asunto(s)
Fármacos Anti-VIH/farmacología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/genética , Inhibidores de la Transcriptasa Inversa/farmacología , Dedos de Zinc , Secuencia de Bases , Línea Celular , ADN Viral/genética , Farmacorresistencia Viral , Endonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/farmacología , Productos del Gen pol/genética , Productos del Gen pol/metabolismo , Células HEK293 , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/terapia , Proteasa del VIH/genética , Proteasa del VIH/metabolismo , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/metabolismo , Humanos , Datos de Secuencia Molecular , Mutación , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacología , Transducción Genética , Replicación Viral/efectos de los fármacos
9.
Sci Rep ; 6: 20064, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26829887

RESUMEN

Genome editing by designer nucleases is a rapidly evolving technology utilized in a highly diverse set of research fields. Among all fields, the T7 endonuclease mismatch cleavage assay, or Surveyor assay, is the most commonly used tool to assess genomic editing by designer nucleases. This assay, while relatively easy to perform, provides only a semi-quantitative measure of mutation efficiency that lacks sensitivity and accuracy. We demonstrate a simple droplet digital PCR assay that quickly quantitates a range of indel mutations with detection as low as 0.02% mutant in a wild type background and precision (≤6%CV) and accuracy superior to either mismatch cleavage assay or clonal sequencing when compared to next-generation sequencing. The precision and simplicity of this assay will facilitate comparison of gene editing approaches and their optimization, accelerating progress in this rapidly-moving field.


Asunto(s)
Exodesoxirribonucleasas/química , VIH-1/genética , Mutación INDEL , Reacción en Cadena de la Polimerasa/métodos , Provirus/genética , Células HEK293 , Humanos
10.
PLoS One ; 9(5): e97579, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24827459

RESUMEN

Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.


Asunto(s)
Antivirales/metabolismo , Endonucleasas/genética , Productos del Gen pol/genética , Marcación de Gen , Virus de la Hepatitis B/genética , Transactivadores/genética , Proteínas del Núcleo Viral/genética , Antivirales/química , Secuencia de Bases , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Viral/genética , Dependovirus/genética , Endonucleasas/química , Endonucleasas/metabolismo , Productos del Gen pol/antagonistas & inhibidores , Productos del Gen pol/química , Vectores Genéticos , Células HEK293 , Virus de la Hepatitis B/química , Hepatocitos/virología , Humanos , Datos de Secuencia Molecular , Ingeniería de Proteínas , Transactivadores/antagonistas & inhibidores , Transactivadores/química , Proteínas del Núcleo Viral/antagonistas & inhibidores , Proteínas del Núcleo Viral/química , Proteínas Reguladoras y Accesorias Virales , Replicación Viral/genética , Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA