Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Alzheimers Dement ; 16(6): 896-907, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32301581

RESUMEN

INTRODUCTION: Extracellular vesicles (EVs) from human Alzheimer's disease (AD) biospecimens contain amyloid beta (Aß) peptide and tau. While AD EVs are known to affect brain disease pathobiology, their biochemical and molecular characterizations remain ill defined. METHODS: EVs were isolated from the cortical gray matter of 20 AD and 18 control brains. Tau and Aß levels were measured by immunoassay. Differentially expressed EV proteins were assessed by quantitative proteomics and machine learning. RESULTS: Levels of pS396 tau and Aß1-42 were significantly elevated in AD EVs. High levels of neuron- and glia-specific factors are detected in control and AD EVs, respectively. Machine learning identified ANXA5, VGF, GPM6A, and ACTZ in AD EV compared to controls. They distinguished AD EVs from controls in the test sets with 88% accuracy. DISCUSSION: In addition to Aß and tau, ANXA5, VGF, GPM6A, and ACTZ are new signature proteins in AD EVs.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Proteoma , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/metabolismo , Femenino , Humanos , Aprendizaje Automático , Masculino , Fosforilación , Proteómica , Proteínas tau/metabolismo
2.
Cell Rep ; 41(10): 111773, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36476846

RESUMEN

Neural stem cells (NSCs) in the adult ventricular-subventricular zone (V-SVZ) generate neurons and glia throughout life. MicroRNAs are important post-transcriptional regulators frequently acting in a context-dependent manner. Here, microRNA profiling defines cohorts of miRNAs in quiescent and activated NSCs, with miR-17∼92 highly upregulated in activated NSCs and transit amplifying cells (TACs) versus quiescent NSCs. Conditional miR-17∼92 deletion in the adult V-SVZ results in stage-specific effects. In NSCs, it reduces proliferation in vitro and in vivo, whereas in TACs, it selectively shifts neurogenic OLIG2- DLX2+ toward oligodendrogenic OLIG2+ DLX2- TACs, due to de-repression of an oligodendrogenic program, leading to increased oligodendrogenesis in vivo. This differential regulation of TAC subpopulations highlights the importance of TAC heterogeneity. Finally, in the NSC lineage for intraventricular oligodendrocyte progenitors, miR-17∼92 deletion decreases proliferation and maturation. Together, these findings reveal multiple stage-specific functions of the miR-17∼92 cluster within different adult V-SVZ lineages.


Asunto(s)
Células-Madre Neurales
3.
Aging Dis ; 12(6): 1363-1375, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34527415

RESUMEN

Chronic Traumatic Encephalopathy (CTE) is a tauopathy that affects individuals with a history of exposure to repetitive head impacts, including National Football League (NFL) players. Extracellular vesicles (EVs) are known to carry tau in Alzheimer's disease and other tauopathies. We examined protein profiles of EVs separated from the plasma of former NFL players at risk for CTE. EVs were separated from the plasma from former NFL players and age-matched controls using size-exclusion chromatography. Label-free quantitative proteomic analysis identified 675 proteins in plasma EVs, and 17 proteins were significantly differentially expressed between former NFL players and controls. Total tau (t-tau) and tau phosphorylated at threonie181 (p-tau181) in plasma-derived EVs were measured by ultrasensitive immunoassay. Level of t-tau and p-tau181 in EVs were significantly different, and the area under the receiver operating characteristic curve (AUC) of t-tau and p-tau181 showed 0.736 and 0.715, respectively. Machine learning analysis indicated that a combination of collagen type VI alpha 3 and 1 chain (COL6A3 and COL6A1) and reelin (RELN) can distinguish former NFL players from controls with 85% accuracy (AUC = 0.85). Based on the plasma EV proteomics, these data provide protein profiling of plasma EVs for CTE, and indicate combination of COL6A3, RELN and COL6A1 in plasma EVs may serve as the potential diagnostic biomarkers for CTE.

4.
Front Neurosci ; 13: 1059, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649498

RESUMEN

Chronic Traumatic Encephalopathy (CTE) is a tauopathy that affects individuals with a history of repetitive mild traumatic brain injury, such as American football players. Initial neuropathologic changes in CTE include perivascular deposition of phosphorylated microtubule-associated protein tau (p-tau) neurofibrillary tangles and other aggregates in neurons, astrocytes and cell processes in an irregular pattern often at the depths of the cortical sulci. In later stages, the p-tau depositions become widespread and is associated with neurodegeneration. Extracellular vesicles (EVs) are known to carry neuropathogenic molecules, most notably p-tau. We therefore examined the protein composition of EVs isolated from the cerebrospinal fluid (CSF) of former National Football League (NFL) players with cognitive and neuropsychiatric dysfunction, and an age-matched control group (CTRL) with no history of contact sports or traumatic brain injury. EVs were isolated from the CSF samples using an affinity purification kit. Total tau (t-tau) and tau phosphorylated on threonine181 (p-tau181) in CSF-derived EVs from former NFL players and CTRL participants were measured by ultrasensitive immunoassay. The t-tau and p-tau181 levels of CSF-derived EV were positively correlated with the t-tau and p-tau181 levels of total CSF in former NFL players, respectively, but not in the CTRL group. 429 unique proteins were identified from CSF-derived EVs and quantified by TMT-10 plex method. The identified protein molecules were significantly enriched for the extracellular exosome molecules, Alzheimer's disease pathway and Age/Telomere Length ontology as determined by DAVID Gene Ontology analysis. Ingenuity pathway analysis of the differentially expressed EV proteins revealed enrichment of canonical liver/retinoid X receptor activation pathway. Upstream effect analysis predicted MAPT (tau) as an upstream regulator in former NFL players. These data will be useful for understanding the EV-mediated disease spread and development of novel EV biomarkers for CTE and related disorders.

5.
J Neuroimmune Pharmacol ; 13(3): 292-308, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29185187

RESUMEN

Extracellular vesicles (EVs) are physiological vesicles secreted from most eukaryotes and contain cargos of their cell of origin. EVs, and particularly a subset of EV known as exosomes, are emerging as key mediators of cell to cell communication and waste management for cells both during normal organismal function and in disease. In this review, we investigate the rapidly growing field of exosome biology, their biogenesis, cargo loading, and uptake by other cells. We particularly consider the role of exosomes in Alzheimer's disease, both as a pathogenic agent and as a disease biomarker. We also explore the emerging role of exosomes in chronic traumatic encephalopathy. Finally, we highlight open questions in these fields and the possible use of exosomes as therapeutic targets and agents.


Asunto(s)
Enfermedad de Alzheimer/patología , Espacio Extracelular , Vesículas Extracelulares/patología , Tauopatías/patología , Enfermedad de Alzheimer/metabolismo , Animales , Vesículas Extracelulares/metabolismo , Humanos , Tauopatías/metabolismo
6.
J Neuroimmune Pharmacol ; 13(2): 254-264, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29516269

RESUMEN

We studied the effect of two rare mutations (rs144662445 and rs149979685) in the A-kinase anchoring protein 9 (AKAP9) gene, previously associated with Alzheimer disease (AD) in African Americans (AA), on post-translational modifications of AD-related pathogenic molecules, amyloid precursor protein (APP) and microtubule-associated protein Tau using lymphoblastoid cell lines (LCLs) from 11 AA subjects with at least one AKAP9 mutation and 17 AA subjects lacking these mutations. LCLs were transduced by viral vectors expressing causative AD mutations in APP or human full-length wild type Tau. Cell lysates were analyzed for total APP, Aß40, and total and T181 phospho-Tau (pTau). AKAP9 mutations had no effect on Aß40/APP, but significantly increased pTau/Tau ratio in LCLs treated with phosphodiesterase-4 inhibitor rolipram, which activates protein kinase A. Proteomic analysis of Tau interactome revealed enrichment of RNA binding proteins and decrease of proteasomal molecules in rolipram-treated cells with AKAP9 mutations. This study shows the impact of rare functional AKAP9 mutations on Tau, a central mechanism of AD pathogenesis, in LCLs derived from AD and control subjects.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/genética , Enfermedad de Alzheimer/genética , Proteínas del Citoesqueleto/genética , Procesamiento Proteico-Postraduccional/genética , Proteínas tau/metabolismo , Negro o Afroamericano , Anciano , Enfermedad de Alzheimer/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Mutación Missense , Fosforilación
7.
Neuron ; 82(3): 545-59, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24811379

RESUMEN

Adult neurogenic niches harbor quiescent neural stem cells; however, their in vivo identity has been elusive. Here, we prospectively isolate GFAP(+)CD133(+) (quiescent neural stem cells [qNSCs]) and GFAP(+)CD133(+)EGFR(+) (activated neural stem cells [aNSCs]) from the adult ventricular-subventricular zone. aNSCs are rapidly cycling, highly neurogenic in vivo, and enriched in colony-forming cells in vitro. In contrast, qNSCs are largely dormant in vivo, generate olfactory bulb interneurons with slower kinetics, and only rarely form colonies in vitro. Moreover, qNSCs are Nestin negative, a marker widely used for neural stem cells. Upon activation, qNSCs upregulate Nestin and EGFR and become highly proliferative. Notably, qNSCs and aNSCs can interconvert in vitro. Transcriptome analysis reveals that qNSCs share features with quiescent stem cells from other organs. Finally, small-molecule screening identified the GPCR ligands, S1P and PGD2, as factors that actively maintain the quiescent state of qNSCs.


Asunto(s)
Células Madre Adultas/fisiología , Ventrículos Laterales/citología , Ventrículos Laterales/fisiología , Células-Madre Neurales/fisiología , Animales , Astrocitos/fisiología , Biomarcadores/metabolismo , Separación Celular/métodos , Células Cultivadas , Humanos , Ratones , Ratones Transgénicos , Estudios Prospectivos , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA