RESUMEN
Fragile X syndrome is the most common inherited intellectual disability and mono-genetic cause of autism spectrum disorder. It is a neurodevelopmental condition occurring due to a CGG trinucleotide expansion in the FMR1 gene. Polymorphisms and variants in large-conductance calcium-activated potassium channels are increasingly linked to intellectual disability and loss of FMR protein causes reduced large-conductance calcium-activated potassium channel activity leading to abnormalities in synapse function. Using the cannabinoid-like large-conductance calcium-activated potassium channel activator VSN16R we rescued behavioural deficits such as repetitive behaviour, hippocampal dependent tests of daily living, hyperactivity and memory in a mouse model of fragile X syndrome. VSN16R has been shown to be safe in a phase 1 study in healthy volunteers and in a phase 2 study in patients with multiple sclerosis with high oral bioavailability and no serious adverse effects reported. VSN16R could therefore be directly utilized in a fragile X syndrome clinical study. Moreover, VSN16R showed no evidence of tolerance, which strongly suggests that chronic VSN16R may have great therapeutic value for fragile X syndrome and autism spectrum disorder. This study provides new insight into the pathophysiology of fragile X syndrome and identifies a new pathway for drug intervention for this debilitating disorder.
Asunto(s)
Trastorno del Espectro Autista , Cannabinoides , Síndrome del Cromosoma X Frágil , Animales , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Humanos , Ratones , FenotipoRESUMEN
Ketone bodies are the most energy-efficient fuel and yield more ATP per mole of substrate than pyruvate and increase the free energy released from ATP hydrolysis. Elevation of circulating ketones via high-fat, low-carbohydrate diets has been used for the treatment of drug-refractory epilepsy and for neurodegenerative diseases, such as Parkinson's disease. Ketones may also be beneficial for muscle and brain in times of stress, such as endurance exercise. The challenge has been to raise circulating ketone levels by using a palatable diet without altering lipid levels. We found that blood ketone levels can be increased and cholesterol and triglycerides decreased by feeding rats a novel ketone ester diet: chow that is supplemented with (R)-3-hydroxybutyl (R)-3-hydroxybutyrate as 30% of calories. For 5 d, rats on the ketone diet ran 32% further on a treadmill than did control rats that ate an isocaloric diet that was supplemented with either corn starch or palm oil (P < 0.05). Ketone-fed rats completed an 8-arm radial maze test 38% faster than did those on the other diets, making more correct decisions before making a mistake (P < 0.05). Isolated, perfused hearts from rats that were fed the ketone diet had greater free energy available from ATP hydrolysis during increased work than did hearts from rats on the other diets as shown by using [31P]-NMR spectroscopy. The novel ketone diet, therefore, improved physical performance and cognitive function in rats, and its energy-sparing properties suggest that it may help to treat a range of human conditions with metabolic abnormalities.-Murray, A. J., Knight, N. S., Cole, M. A., Cochlin, L. E., Carter, E., Tchabanenko, K., Pichulik, T., Gulston, M. K., Atherton, H. J., Schroeder, M. A., Deacon, R. M. J., Kashiwaya, Y., King, M. T., Pawlosky, R., Rawlins, J. N. P., Tyler, D. J., Griffin, J. L., Robertson, J., Veech, R. L., Clarke, K. Novel ketone diet enhances physical and cognitive performance.
Asunto(s)
Cognición/fisiología , Dieta , Ingestión de Energía/fisiología , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Cetonas/administración & dosificación , Animales , Colesterol/sangre , Carbohidratos de la Dieta/metabolismo , Grasas de la Dieta/metabolismo , Insulina/metabolismo , Masculino , Ratas Wistar , Triglicéridos/sangreAsunto(s)
Encefalopatías , Síndrome del Cromosoma X Frágil , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil/genética , Furanos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores sigma/agonistas , Transducción de Señal , Receptor Sigma-1RESUMEN
Gut microbiome dysbiosis is linked to many neurological disorders including Alzheimer's disease (AD). A major risk factor for AD is polymorphism in the apolipoprotein E (APOE) gene, which affects gut microbiome composition. To explore the gut-brain axis in AD, long-lived animal models of naturally developing AD-like pathologies are needed. Octodon degus (degu) exhibit spontaneous AD-like symptoms and ApoE mutations, making them suitable for studying the interplay between AD genetic determinants and gut microbiome. We analyzed the association between APOE genotype and gut microbiome in 50 humans and 32 degu using16S rRNA gene amplicon sequencing. Significant associations were found between the degu ApoE mutation and gut microbial changes in degu, notably a depletion of Ruminococcaceae and Akkermansiaceae and an enrichment of Prevotellaceae, mirroring patterns seen in people with AD. The altered taxa were previously suggested to be involved in AD, validating the degu as an unconventional model for studying the AD/microbiome crosstalk.
RESUMEN
Fragile X syndrome is a neurodevelopmental disorder caused by silencing of the fragile X messenger ribonucleotide gene. Patients display a wide spectrum of symptoms ranging from intellectual and learning disabilities to behavioural challenges including autism spectrum disorder. In addition to this, patients also display a diversity of symptoms due to mosaicism. These factors make fragile X syndrome a difficult syndrome to manage and suggest that a single targeted therapeutic approach cannot address all the symptoms. To this end, we utilized Healx's data-driven drug discovery platform to identify a treatment strategy to address the wide range of diverse symptoms among patients. Computational methods identified the combination of ibudilast and gaboxadol as a treatment for several pathophysiological targets that could potentially reverse multiple symptoms associated with fragile X syndrome. Ibudilast is an approved broad-spectrum phosphodiesterase inhibitor, selective against both phosphodiesterase 4 and phosphodiesterase 10, and has demonstrated to have several beneficial effects in the brain. Gaboxadol is a GABAA receptor agonist, selective against the delta subunit, which has previously displayed encouraging results in a fragile X syndrome clinical trial. Alterations in GABA and cyclic adenosine monophosphate metabolism have long since been associated with the pathophysiology of fragile X syndrome; however, targeting both pathways simultaneously has never been investigated. Both drugs have a good safety and tolerability profile in the clinic making them attractive candidates for repurposing. We set out to explore whether the combination of ibudilast and gaboxadol could demonstrate therapeutic efficacy in a fragile X syndrome mouse model. We found that daily treatment with ibudilast significantly enhanced the ability of fragile X syndrome mice to perform a number of different cognitive assays while gaboxadol treatment improved behaviours such as hyperactivity, aggression, stereotypy and anxiety. Importantly, when ibudilast and gaboxadol were co-administered, the cognitive deficits as well as the aforementioned behaviours were rescued. Moreover, this combination treatment showed no evidence of tolerance, and no adverse effects were reported following chronic dosing. This work demonstrates for the first time that by targeting multiple pathways, with a combination treatment, we were able to rescue more phenotypes in a fragile X syndrome mouse model than either ibudilast or gaboxadol could achieve as monotherapies. This combination treatment approach holds promise for addressing the wide spectrum of diverse symptoms in this heterogeneous patient population and may have therapeutic potential for idiopathic autism.
RESUMEN
The neurodevelopmental disorder Pitt Hopkins syndrome (PTHS) causes clinical symptoms similar to Rett syndrome (RTT) patients. However, RTT is caused by MECP2 mutations whereas mutations in the TCF4 gene lead to PTHS. The mechanistic commonalities underling these two disorders are unknown, but their shared symptomology suggest that convergent pathway-level disruption likely exists. We reprogrammed patient skin derived fibroblasts into induced neuronal progenitor cells. Interestingly, we discovered that MeCP2 levels were decreased in PTHS patient iNPCs relative to healthy controls and that both iNPCs and iAstrocytes displayed defects in function and differentiation in a mutation-specific manner. When Tcf4+/- mice were genetically crossed with mice overexpressing MeCP2, molecular and phenotypic defects were significantly ameliorated, underlining and important role of MeCP2 in PTHS pathology. Importantly, post-natal intracerebroventricular gene replacement therapy with adeno-associated viral vector serotype 9 (AAV9)-expressing MeCP2 (AAV9.P546.MeCP2) significantly improved iNPC and iAstrocyte function and effectively ameliorated histological and behavioral defects in Tcf4+/- mice. Combined, our data suggest a previously unknown role of MeCP2 in PTHS pathology and common pathways that might be affected in multiple neurodevelopmental disorders. Our work highlights potential novel therapeutic targets for PTHS, including upregulation of MeCP2 expression or its downstream targets or, potentially, MeCP2-based gene therapy.
Asunto(s)
Modelos Animales de Enfermedad , Terapia Genética , Proteína 2 de Unión a Metil-CpG , Fenotipo , Factor de Transcripción 4 , Animales , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Terapia Genética/métodos , Ratones , Humanos , Factor de Transcripción 4/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/terapia , Masculino , Ratones Transgénicos , Femenino , Fibroblastos/metabolismo , Células-Madre Neurales/metabolismo , Ratones Endogámicos C57BL , Hiperventilación , FaciesRESUMEN
The retinoic acid receptor (RAR) α system plays a key role in the adult brain, participating in the homeostatic control of synaptic plasticity, essential for memory function. Here we show that RARα signalling is down-regulated by amyloid beta (Aß), which inhibits the synthesis of the endogenous ligand, retinoic acid (RA). This results in the counteraction of a variety of RARα-activated pathways that are key in the aetiopathology of Alzheimer's disease (AD) but which can be reversed by an RARα agonist. RARα signalling improves cognition in the Tg2576 mice, it has an anti-inflammatory effect and promotes Aß clearance by increasing insulin degrading enzyme and neprilysin activity in both microglia and neurons. In addition, RARα signalling prevents tau phosphorylation. Therefore, stimulation of the RARα signalling pathway using a synthetic agonist, by both clearing Aß and counteracting some of its toxic effects, offers therapeutic potential for the treatment of AD.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Receptor alfa X Retinoide/agonistas , Tretinoina/metabolismo , Animales , Benzoatos/farmacología , Cognición/efectos de los fármacos , Regulación hacia Abajo , Insulisina/metabolismo , Ratones , Microglía/metabolismo , Neprilisina/metabolismo , Neuronas/metabolismo , Receptor alfa X Retinoide/metabolismo , Transducción de Señal , Tetrahidronaftalenos/farmacologíaRESUMEN
Here we present a strategy to determine the genetic basis of variance in complex phenotypes that arise from natural, as opposed to induced, genetic variation in mice. We show that a commercially available strain of outbred mice, MF1, can be treated as an ultrafine mosaic of standard inbred strains and accordingly used to dissect a known quantitative trait locus influencing anxiety. We also show that this locus can be subdivided into three regions, one of which contains Rgs2, which encodes a regulator of G protein signaling. We then use quantitative complementation to show that Rgs2 is a quantitative trait gene. This combined genetic and functional approach should be applicable to the analysis of any quantitative trait.
Asunto(s)
Ansiedad/genética , Mapeo Cromosómico/métodos , Carácter Cuantitativo Heredable , Proteínas RGS/fisiología , Animales , Animales no Consanguíneos , Secuencia de Bases , Prueba de Complementación Genética , Ratones , Ratones Endogámicos , Mosaicismo , Proteínas RGS/genéticaRESUMEN
The cytoplasmic dynein complex is fundamentally important to all eukaryotic cells for transporting a variety of essential cargoes along microtubules within the cell. This complex also plays more specialized roles in neurons. The complex consists of 11 types of protein that interact with each other and with external adaptors, regulators and cargoes. Despite the importance of the cytoplasmic dynein complex, we know comparatively little of the roles of each component protein, and in mammals few mutants exist that allow us to explore the effects of defects in dynein-controlled processes in the context of the whole organism. Here we have taken a genotype-driven approach in mouse (Mus musculus) to analyze the role of one subunit, the dynein light intermediate chain 1 (Dync1li1). We find that, surprisingly, an N235Y point mutation in this protein results in altered neuronal development, as shown from in vivo studies in the developing cortex, and analyses of electrophysiological function. Moreover, mutant mice display increased anxiety, thus linking dynein functions to a behavioral phenotype in mammals for the first time. These results demonstrate the important role that dynein-controlled processes play in the correct development and function of the mammalian nervous system.
Asunto(s)
Conducta Animal/fisiología , Dineínas Citoplasmáticas/genética , Regulación del Desarrollo de la Expresión Génica/genética , Fenotipo , Mutación Puntual/genética , Animales , Animales Recién Nacidos , Asparagina/genética , Recuento de Células/métodos , Células Cultivadas , Corteza Cerebral/citología , Dendritas/genética , Embrión de Mamíferos , Femenino , Fibroblastos/fisiología , Fibroblastos/ultraestructura , Ganglios Espinales/citología , Proteínas Fluorescentes Verdes/genética , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/genética , Proteínas del Tejido Nervioso , Conducción Nerviosa/genética , Neuronas/clasificación , Neuronas/citología , Neuronas/fisiología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Desempeño Psicomotor , Estadísticas no Paramétricas , Tirosina/genética , Levantamiento de Peso/fisiologíaRESUMEN
The synucleins (α, ß, and γ) are highly homologous proteins thought to play a role in regulating neurotransmission and are found abundantly in presynaptic terminals. To overcome functional overlap between synuclein proteins and to understand their role in presynaptic signaling from mesostriatal dopaminergic neurons, we produced mice lacking all three members of the synuclein family. The effect on the mesostriatal system was assessed in adult (4- to 14-month-old) animals using a combination of behavioral, biochemical, histological, and electrochemical techniques. Adult triple-synuclein-null (TKO) mice displayed no overt phenotype and no change in the number of midbrain dopaminergic neurons. TKO mice were hyperactive in novel environments and exhibited elevated evoked release of dopamine in the striatum detected with fast-scan cyclic voltammetry. Elevated dopamine release was specific to the dorsal not ventral striatum and was accompanied by a decrease of dopamine tissue content. We confirmed a normal synaptic ultrastructure and a normal abundance of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein complexes in the dorsal striatum. Treatment of TKO animals with drugs affecting dopamine metabolism revealed normal rate of synthesis, enhanced turnover, and reduced presynaptic striatal dopamine stores. Our data uniquely reveal the importance of the synuclein proteins in regulating neurotransmitter release from specific populations of midbrain dopamine neurons through mechanisms that differ from those reported in other neurons. The finding that the complete loss of synucleins leads to changes in dopamine handling by presynaptic terminals specifically in those regions preferentially vulnerable in Parkinson's disease may ultimately inform on the selectivity of the disease process.
Asunto(s)
Cuerpo Estriado/fisiología , Sustancia Negra/fisiología , alfa-Sinucleína/deficiencia , Sinucleína beta/deficiencia , gamma-Sinucleína/deficiencia , Animales , Dopamina/fisiología , Masculino , Mesencéfalo/citología , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/clasificación , Neuronas/metabolismo , Neuronas/fisiología , Neurotransmisores/genética , Neurotransmisores/metabolismo , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , alfa-Sinucleína/genética , Sinucleína beta/genética , gamma-Sinucleína/genéticaRESUMEN
Spatial properties of stimuli are sometimes encoded even when incidental to the demands of a particular learning task. Incidental encoding of spatial information may interfere with learning by (i) causing a failure to generalize learning between trials in which a cue is presented in different spatial locations and (ii) adding common spatial features to stimuli that predict different outcomes. Hippocampal lesions have been found to facilitate acquisition of certain tasks. This facilitation may occur because hippocampal lesions impair incidental encoding of spatial information that interferes with learning. To test this prediction mice with lesions of the hippocampus were trained on appetitive simple simultaneous discrimination tasks using inserts in the goal arms of a T-maze. It was found that hippocampal lesioned mice were facilitated at learning the discriminations, but they were sensitive to changes in spatial information in a manner that was similar to control mice. In a second experiment it was found that both control and hippocampal lesioned mice showed equivalent incidental encoding of egocentric spatial properties of the inserts, but both groups did not encode the allocentric information. These results demonstrate that mice show incidental encoding of egocentric spatial information that decreases the ability to solve simultaneous discrimination tasks. The normal egocentric spatial encoding in hippocampal lesioned mice contradicts theories of hippocampal function that suggest that the hippocampus is necessary for incidental learning per se, or is required for modulating stimulus representations based on the relevancy of information. The facilitated learning suggests that the hippocampal lesions can enhance learning of the same qualitative information as acquired by control mice.
Asunto(s)
Aprendizaje Discriminativo/fisiología , Hipocampo/lesiones , Percepción Espacial/fisiología , Animales , Discriminación en Psicología , Femenino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Distribución AleatoriaRESUMEN
Human FTO gene variants are associated with body mass index and type 2 diabetes. Because the obesity-associated SNPs are intronic, it is unclear whether changes in FTO expression or splicing are the cause of obesity or if regulatory elements within intron 1 influence upstream or downstream genes. We tested the idea that FTO itself is involved in obesity. We show that a dominant point mutation in the mouse Fto gene results in reduced fat mass, increased energy expenditure, and unchanged physical activity. Exposure to a high-fat diet enhances lean mass and lowers fat mass relative to control mice. Biochemical studies suggest the mutation occurs in a structurally novel domain and modifies FTO function, possibly by altering its dimerisation state. Gene expression profiling revealed increased expression of some fat and carbohydrate metabolism genes and an improved inflammatory profile in white adipose tissue of mutant mice. These data provide direct functional evidence that FTO is a causal gene underlying obesity. Compared to the reported mouse FTO knockout, our model more accurately reflects the effect of human FTO variants; we observe a heterozygous as well as homozygous phenotype, a smaller difference in weight and adiposity, and our mice do not show perinatal lethality or an age-related reduction in size and length. Our model suggests that a search for human coding mutations in FTO may be informative and that inhibition of FTO activity is a possible target for the treatment of morbid obesity.
Asunto(s)
Tejido Adiposo/metabolismo , Obesidad/genética , Obesidad/metabolismo , Oxo-Ácido-Liasas/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Secuencia de Aminoácidos , Animales , Peso Corporal , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Oxigenasas de Función Mixta , Datos de Secuencia Molecular , Mutación Missense , Obesidad/fisiopatología , Oxo-Ácido-Liasas/química , Oxo-Ácido-Liasas/metabolismo , Estructura Terciaria de Proteína , Alineación de SecuenciaRESUMEN
The Octodon degus is a South American rodent that is receiving increased attention as a potential model of aging and sporadic late-onset Alzheimer's disease (AD). Impairments in spatial memory tasks in Octodon degus have been reported in relation to either advanced AD-like disease or hippocampal lesion, opening the way to investigate how the function of hippocampal networks affects behavior across AD stages. However, no characterization of hippocampal electrophysiology exists in this species. Here we describe in young, healthy specimens the activity of neurons and local field potential rhythms during spatial navigation tasks with and without objects. Our findings show similarities between the Octodon degus and laboratory rodents. First, place cells with characteristics similar to those found in rats and mice exist in the CA1 subfield of the Octodon degus. Second, the introduction of objects elicits novelty-related exploration and an increase in activity of CA1 cells, with location specific and unspecific components. Third, oscillations of the local field potential are organized according to their spectral content into bands similar to those found in laboratory rodents. These results suggest a common framework of underlying mechanisms, opening the way to future studies of hippocampal dysfunction in this species associated to aging and disease.
Asunto(s)
Enfermedad de Alzheimer , Octodon , Envejecimiento/fisiología , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Hipocampo/patología , Ratones , RatasRESUMEN
The degu (Octodon degus) is a diurnal long-lived rodent that can spontaneously develop molecular and behavioral changes that mirror those seen in human aging. With age some degu, but not all individuals, develop cognitive decline and brain pathology like that observed in Alzheimer's disease including neuroinflammation, hyperphosphorylated tau and amyloid plaques, together with other co-morbidities associated with aging such as macular degeneration, cataracts, alterations in circadian rhythm, diabetes and atherosclerosis. Here we report the whole-genome sequencing and analysis of the degu genome, which revealed unique features and molecular adaptations consistent with aging and Alzheimer's disease. We identified single nucleotide polymorphisms in genes associated with Alzheimer's disease including a novel apolipoprotein E (Apoe) gene variant that correlated with an increase in amyloid plaques in brain and modified the in silico predicted degu APOE protein structure and functionality. The reported genome of an unconventional long-lived animal model of aging and Alzheimer's disease offers the opportunity for understanding molecular pathways involved in aging and should help advance biomedical research into treatments for Alzheimer's disease.
RESUMEN
The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene. Affected individuals are characterized by deficits in the learning and production of complex orofacial motor sequences underlying fluent speech and display impaired linguistic processing for both spoken and written language. The FOXP2 transcription factor is highly similar in many vertebrate species, with conserved expression in neural circuits related to sensorimotor integration and motor learning. In this study, we generated mice carrying an identical point mutation to that of the KE family, yielding the equivalent arginine-to-histidine substitution in the Foxp2 DNA-binding domain. Homozygous R552H mice show severe reductions in cerebellar growth and postnatal weight gain but are able to produce complex innate ultrasonic vocalizations. Heterozygous R552H mice are overtly normal in brain structure and development. Crucially, although their baseline motor abilities appear to be identical to wild-type littermates, R552H heterozygotes display significant deficits in species-typical motor-skill learning, accompanied by abnormal synaptic plasticity in striatal and cerebellar neural circuits.
Asunto(s)
Factores de Transcripción Forkhead/genética , Aprendizaje/fisiología , Destreza Motora/fisiología , Plasticidad Neuronal/genética , Mutación Puntual , Proteínas Represoras/genética , Trastornos del Habla/genética , Alelos , Animales , Heterocigoto , Humanos , Ratones , Ratones Noqueados , Vocalización Animal/fisiologíaAsunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras/legislación & jurisprudencia , Alimentos Marinos/normas , Animales , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Peces , Modelos Económicos , Océanos y MaresRESUMEN
The human gut microbiome is the ecosystem of microorganisms that live in the human digestive system. Several studies have related gut microbiome variants to metabolic, immune and nervous system disorders. Fragile X syndrome (FXS) is a neurodevelopmental disorder considered the most common cause of inherited intellectual disability and the leading monogenetic cause of autism. The role of the gut microbiome in FXS remains largely unexplored. Here, we report the results of a gut microbiome analysis using a FXS mouse model and 16S ribosomal RNA gene sequencing. We identified alterations in the fmr1 KO2 gut microbiome associated with different bacterial species, including those in the genera Akkermansia, Sutterella, Allobaculum, Bifidobacterium, Odoribacter, Turicibacter, Flexispira, Bacteroides, and Oscillospira. Several gut bacterial metabolic pathways were significantly altered in fmr1 KO2 mice, including menaquinone degradation, catechol degradation, vitamin B6 biosynthesis, fatty acid biosynthesis, and nucleotide metabolism. Several of these metabolic pathways, including catechol degradation, nucleotide metabolism and fatty acid biosynthesis, were previously reported to be altered in children and adults with autism. The present study reports a potential association of the gut microbiome with FXS, thereby opening new possibilities for exploring reliable treatments and non-invasive biomarkers.
RESUMEN
Fragile X syndrome (FXS), a disorder of synaptic development and function, is the most prevalent genetic form of intellectual disability and autism spectrum disorder. FXS mouse models display clinically-relevant phenotypes, such as increased anxiety and hyperactivity. Despite their availability, so far advances in drug development have not yielded new treatments. Therefore, testing novel drugs that can ameliorate FXS' cognitive and behavioral impairments is imperative. ANAVEX2-73 (blarcamesine) is a sigma-1 receptor (S1R) agonist with a strong safety record and preliminary efficacy evidence in patients with Alzheimer's disease and Rett syndrome, other synaptic neurodegenerative and neurodevelopmental disorders. S1R's role in calcium homeostasis and mitochondrial function, cellular functions related to synaptic function, makes blarcamesine a potential drug candidate for FXS. Administration of blarcamesine in 2-month-old FXS and wild type mice for 2 weeks led to normalization in two key neurobehavioral phenotypes: open field test (hyperactivity) and contextual fear conditioning (associative learning). Furthermore, there was improvement in marble-burying (anxiety, perseverative behavior). It also restored levels of BDNF, a converging point of many synaptic regulators, in the hippocampus. Positron emission tomography (PET) and ex vivo autoradiographic studies, using the highly selective S1R PET ligand [18F]FTC-146, demonstrated the drug's dose-dependent receptor occupancy. Subsequent analyses also showed a wide but variable brain regional distribution of S1Rs, which was preserved in FXS mice. Altogether, these neurobehavioral, biochemical, and imaging data demonstrates doses that yield measurable receptor occupancy are effective for improving the synaptic and behavioral phenotype in FXS mice. The present findings support the viability of S1R as a therapeutic target in FXS, and the clinical potential of blarcamesine in FXS and other neurodevelopmental disorders.
Asunto(s)
Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Furanos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Receptores sigma/agonistas , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Furanos/farmacocinética , Furanos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacocinética , Fármacos Neuroprotectores/farmacología , Fenotipo , Unión Proteica , Receptores sigma/metabolismo , Receptor Sigma-1RESUMEN
Efficiency, defined as the amount of work produced for a given amount of oxygen consumed, is a key determinant of endurance capacity, and can be altered by metabolic substrate supply, in that fatty acid oxidation is less efficient than glucose oxidation. It is unclear, however, whether consumption of a high-fat diet would be detrimental or beneficial for endurance capacity, due to purported glycogen-sparing properties. In addition, a high-fat diet over several months leads to cognitive impairment. Here, we tested the hypothesis that short-term ingestion of a high-fat diet (55% kcal from fat) would impair exercise capacity and cognitive function in rats, compared with a control chow diet (7.5% kcal from fat) via mitochondrial uncoupling and energy deprivation. We found that rats ran 35% less far on a treadmill and showed cognitive impairment in a maze test with 9 d of high-fat feeding, with respiratory uncoupling in skeletal muscle mitochondria, associated with increased uncoupling protein (UCP3) levels. Our results suggest that high-fat feeding, even over short periods of time, alters skeletal muscle UCP3 expression, affecting energy production and physical performance. Optimization of nutrition to maximize the efficiency of mitochondrial ATP production could improve energetics in athletes and patients with metabolic abnormalities.
Asunto(s)
Trastornos del Conocimiento/inducido químicamente , Grasas de la Dieta/toxicidad , Resistencia Física/efectos de los fármacos , Animales , Dieta , Metabolismo Energético , Ácidos Grasos/metabolismo , Canales Iónicos/metabolismo , Masculino , Mitocondrias Musculares/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Palmitoil-CoA Hidrolasa , Ratas , Ratas Wistar , Tioléster Hidrolasas/metabolismo , Factores de Tiempo , Proteína Desacopladora 3RESUMEN
Fragile X syndrome (FXS), an X-chromosome linked intellectual disability, is the leading monogenetic cause of autism spectrum disorder (ASD), a neurodevelopmental condition that currently has no specific drug treatment. Building upon the demonstrated therapeutic effects on spatial memory of bryostatin-1, a relatively specific activator of protein kinase C (PKC)ε, (also of PKCα) on impaired synaptic plasticity/maturation and spatial learning and memory in FXS mice, we investigated whether bryostatin-1 might affect the autistic phenotypes and other behaviors, including open field activity, activities of daily living (nesting and marble burying), at the effective therapeutic dose for spatial memory deficits. Further evaluation included other non-spatial learning and memory tasks. Interestingly, a short period of treatment (5 weeks) only produced very limited or no therapeutic effects on the autistic and cognitive phenotypes in the Fmr1 KO2 mice, while a longer treatment (13 weeks) with the same dose of bryostatin-1 effectively rescued the autistic and non-spatial learning deficit cognitive phenotypes. It is possible that longer-term treatment would result in further improvement in these fragile X phenotypes. This effect is clearly different from other treatment strategies tested to date, in that the drug shows little acute effect, but strong long-term effects. It also shows no evidence of tolerance, which has been a problem with other drug classes (mGluR5 antagonists, GABA-A and -B agonists). The results strongly suggest that, at appropriate dosing and therapeutic period, chronic bryostatin-1 may have great therapeutic value for both ASD and FXS.