Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Eur J Appl Physiol ; 124(7): 2005-2017, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38376510

RESUMEN

PURPOSE: This study examined the repeated bout effect of two resistance training bouts on cycling efficiency and performance. METHODS: Ten male resistance-untrained cyclists (age 38 ± 13 years; height 180.4 ± 7.0 cm; weight 80.1 ± 10.1; kg; VO2max 51.0 ± 7.6 ml.kg-1.min-1) undertook two resistance training bouts at six-repetition maximum. Blood creatine kinase (CK), delayed-onset of muscle soreness (DOMS), counter-movement jump (CMJ), squat jump (SJ), submaximal cycling and time-trial performance were examined prior to (Tbase), 24 (T24) and 48 (T48) h post each resistance training bout. RESULTS: There were significantly lower values for DOMS (p = 0.027) after Bout 2 than Bout 1. No differences were found between bouts for CK, CMJ, SJ and submaximal cycling performance. However, jump height (CMJ and SJ) submaximal cycling measures (ventilation and perceived exertion) were impaired at T24 and T48 compared to Tbase (p < 0.05). Net efficiency during submaximal cycling improved at Bout 2 (23.8 ± 1.2) than Bout 1 (24.3 ± 1.0%). There were no changes in cycling time-trial performance, although segmental differences in cadence were observed between bouts and time (i.e. Tbase vs T24 vs T48; p < 0.05). CONCLUSION: Cyclists improved their cycling efficiency from Bout 1 to Bout 2 possibly due to the repeated bout effect. However, cyclists maintained their cycling completion times during exercise-induced muscle damage (EIMD) in both resistance training bouts, possibly by altering their cycling strategies. Thus, cyclists should consider EIMD symptomatology after resistance training bouts, particularly for cycling-specific technical sessions, regardless of the repeated bout effect.


Asunto(s)
Rendimiento Atlético , Ciclismo , Entrenamiento de Fuerza , Humanos , Masculino , Entrenamiento de Fuerza/métodos , Adulto , Ciclismo/fisiología , Rendimiento Atlético/fisiología , Mialgia/fisiopatología , Músculo Esquelético/fisiología , Creatina Quinasa/sangre , Consumo de Oxígeno/fisiología
2.
J Strength Cond Res ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241464

RESUMEN

ABSTRACT: Devantier-Thomas, B, Deakin, GB, Crowther, F, Schumann, M, and Doma, K. The impact of exercise-induced muscle damage on various cycling performance metrics: a systematic review and meta-analysis. J Strength Cond Res 38(1): 196-212, 2024-This systematic review and meta-analysis examined the impact of exercise-induced muscle damage (EIMD) on cycling performance. The primary outcome measure was cycling performance, whereas secondary outcome measures included creatine kinase (CK), delayed-onset muscle soreness (DOMS), and muscular contractions. Data were extracted and quantified through forest plots to report on the standardized mean difference and p values. The meta-analysis showed no significant change in oxygen consumption at 24-48 hours (p > 0.05) after the muscle damage protocol, although ventilation and rating of perceived exertion significantly increased (p < 0.05) during submaximal cycling protocols. Peak power output during both sprint and incremental cycling performance was significantly reduced (p < 0.05), but time-trial and distance-trial performance showed no change (p > 0.05). Measures of CK and DOMS were significantly increased (p < 0.05), whereas muscular force was significantly reduced following the muscle-damaging protocols (p < 0.05), confirming that cycling performance was assessed during periods of EIMD. This systematic review showed that EIMD affected both maximal and submaximal cycling performance. Therefore, coaches should consider the effect of EIMD on cycling performance when implementing unaccustomed exercise into a cycling program. Careful consideration should be taken to ensure that additional training does not impair performance and endurance adaptation.

3.
J Sports Sci ; 35(16): 1622-1628, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27594321

RESUMEN

Prospective application of serum cytokines, lipopolysaccharide (LPS), and heat shock proteins (eHSPs) requires reliable measurement of these biomarkers that can signify exercise-induced heat stress in hot conditions. To accomplish this, both short-term (7 day) reliability (at rest, n = 12) and the acute responsiveness of each biomarker to exercise in the heat (pre and post 60-min cycling, 34.5°C and 70% RH, n = 20) were evaluated. Serum was analysed for the concentration of C-reactive protein (CRP), interleukin-6 (IL-6), heat shock protein 72 (eHSP72), immunoglobulin M (IgM) and LPS. Test-retest reliability was determined as the coefficient of variation (CV). Biomarkers with the least short-term within-participant variation were IL-6 (19%, ±20%; CV, ±95% confidence limits (CL)) and LPS (23%, ±13%). Greater variability was observed for IgM, eHSP72 and CRP (CV range 28-38%). IL-6 exhibited the largest increase in response to acute exercise (95%, ±11%, P = < 0.001) and although CRP had a modest CV (12%, ±7%), it increased substantially post-exercise (P = 0.02, ES; 0.78). In contrast, eHSP72 and LPS exhibited trivial changes post-exercise. It appears variation of common inflammatory markers after exercise in the heat is not always discernible from short-term (weekly) variation.


Asunto(s)
Ejercicio Físico/fisiología , Trastornos de Estrés por Calor/diagnóstico , Calor/efectos adversos , Mediadores de Inflamación/sangre , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , Proteínas del Choque Térmico HSP72/sangre , Trastornos de Estrés por Calor/sangre , Humanos , Humedad/efectos adversos , Inmunoglobulina M/sangre , Interleucina-6/sangre , Lipopolisacáridos/sangre , Masculino , Reproducibilidad de los Resultados , Adulto Joven
4.
Eur J Appl Physiol ; 115(8): 1789-99, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25828143

RESUMEN

PURPOSE: This study examined the effects of two typical strength training sessions performed 1 week apart (i.e. repeated bout effect) on sub-maximal running performance and hormonal. METHODS: Fourteen resistance-untrained men (age 24.0 ± 3.9 years; height 1.83 ± 0.11 m; body mass 77.4 ± 14.0 kg; VOpeak 48.1 ± 6.1 M kg(-1) min(-1)) undertook two bouts of high-intensity strength training sessions (i.e. six-repetition maximum). Creatine kinase (CK), delayed-onset muscle soreness (DOMS), counter-movement jump (CMJ) as well as concentrations of serum testosterone, cortisol and testosterone/cortisol ratio (T/C) were examined prior to and immediately post, 24 (T24) and 48 (T48) h post each strength training bout. Sub-maximal running performance was also conducted at T24 and T48 of each bout. RESULTS: When measures were compared between bouts at T48, the degree of elevation in CK (-58.4 ± 55.6 %) and DOMS (-31.43 ± 42.9 %) and acute reduction in CMJ measures (4.1 ± 5.4 %) were attenuated (p < 0.05) following the second bout. Cortisol was increased until T24 (p < 0.05) although there were no differences between bouts and no differences were found for testosterone and T/C ratio (p > 0.05). Sub-maximal running performance was impaired until T24, although changes were not attenuated following the second bout. CONCLUSIONS: The initial bout appeared to provide protection against a number of muscle damage indicators suggesting a greater need for recovery following the initial session of typical lower body resistance exercises in resistance-untrained men although sub-maximal running should be avoided following the first two sessions.


Asunto(s)
Hormonas/sangre , Extremidad Inferior/fisiología , Entrenamiento de Fuerza/métodos , Carrera/fisiología , Adulto , Umbral Anaerobio/fisiología , Creatina Quinasa/sangre , Humanos , Hidrocortisona/sangre , Masculino , Mialgia/etiología , Resistencia Física , Entrenamiento de Fuerza/efectos adversos , Testosterona/sangre , Adulto Joven
5.
J Strength Cond Res ; 28(2): 483-91, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23722111

RESUMEN

This study investigated whether the addition of inspiratory muscle training (IMT) to an existing program of preseason soccer training would augment performance indices such as exercise tolerance and sports-specific performance beyond the use of preseason training alone. Thirty-one men were randomized across 3 groups: experimental (EXP: n = 12), placebo (PLA: n = 9), and control (CON: n = 10). The EXP and PLA completed a 6-week preseason program (2× weekly sessions) in addition to concurrent IMT with either an IMT load (EXP) or negligible (PLA) inspiratory resistance. Control group did not use an IMT device or undertake soccer training. All participants performed the following tests before and after the 6-week period: standard spirometry; maximal inspiratory mouth pressure (MIP); multistage fitness test (MSFT); and a soccer-specific fitness test (SSFT). After 6-weeks training, EXP significantly improved: MIP (p = 0.002); MSFT distance covered (p = 0.02); and post-SSFT blood lactate (BLa) (p = 0.04). No other outcomes from the SSFT were changed. Pre- to posttraining performance outcomes for PLA and CON were unchanged. These findings suggest the addition of IMT to preseason soccer training improved exercise tolerance (MSFT distance covered) but had little effect on soccer-specific fitness indices beyond a slightly reduced posttraining SSFT BLa. In conclusion, there may be benefit for soccer players to incorporate IMT to their preseason training but the effect is not conclusive. It is likely that a greater preseason training stimulus would be particularly meaningful for this population if fitness gains are a priority and evoke a stronger IMT response.


Asunto(s)
Rendimiento Atlético/fisiología , Tolerancia al Ejercicio/fisiología , Acondicionamiento Físico Humano/fisiología , Músculos Respiratorios/fisiología , Fútbol/fisiología , Adolescente , Adulto , Prueba de Esfuerzo , Humanos , Ácido Láctico/sangre , Masculino , Aptitud Física/fisiología , Adulto Joven
6.
Sports Biomech ; 12(3): 302-13, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24245055

RESUMEN

The purpose of this study was to compare kinematics and muscle activity between chin-ups and lat-pull down exercises and between muscle groups during the two exercises. Normalized electromyography (EMG) of biceps brachii (BB), triceps brachii (TB), pectoralis major (PM), latissimus dorsi (LD), rectus abdominus (RA), and erector spinae (ES) and kinematics of back, shoulder, and seventh cervical vertebrae (C7) was analysed during chin-ups and lat-pull down exercises. Normalized EMG of BB and ES and kinematics of shoulder and C7 for chin-ups were greater than lat-pull down exercises during the concentric phase (p < 0.05). For the eccentric phase, RA during lat-pull down exercises was greater than chin-ups and the kinematics of C7 during chin-ups was greater than lat-pull down exercises (p < 0.05). For chin-ups, BB, LD, and ES were greater than PM during the concentric phase, whereas BB and LD were greater than TB, and LD was greater than RA during the eccentric phase (p < 0.05). For lat-pull down exercise, BB and LD were greater than PM, TB, and ES during the concentric phase, whereas LD was greater than PM, TB, and BB during the eccentric phase (p < 0.05). Subsequently, chin-ups appears to be a more functional exercise.


Asunto(s)
Movimiento/fisiología , Músculo Esquelético/fisiología , Entrenamiento de Fuerza , Adolescente , Adulto , Dorso/fisiología , Fenómenos Biomecánicos , Vértebras Cervicales/fisiología , Electromiografía , Humanos , Masculino , Rango del Movimiento Articular/fisiología , Hombro/fisiología , Grabación en Video , Adulto Joven
7.
Sports Med ; 53(8): 1537-1557, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37160563

RESUMEN

BACKGROUND: Several studies have utilised isometric, eccentric and downhill walking pre-conditioning as a strategy for alleviating the signs and symptoms of exercise-induced muscle damage (EIMD) following a bout of damaging physical activity. OBJECTIVES: This systematic review and meta-analysis examined the effects of pre-conditioning strategies on indices of muscle damage and physical performance measures following a second bout of strenuous physical activity. DATA SOURCES: PubMed, CINAHL and Scopus. ELIGIBILITY CRITERIA: Studies meeting the PICO (population, intervention/exposure, comparison, and outcome) criteria were included in this review: (1) general population or "untrained" participants with no contraindications affecting physical performance; (2) studies with a parallel design to examine the prevention and severity of muscle-damaging contractions; (3) outcome measures were compared using baseline and post-intervention measures; and (4) outcome measures included any markers of indirect muscle damage and muscular contractility measures. PARTICIPANTS: Individuals with no resistance training experiences in the previous 6 or more months. INTERVENTIONS: A single bout of pre-conditioning exercises consisting of eccentric or isometric contractions performed a minimum of 24 h prior to a bout of damaging physical activity were compared to control interventions that did not perform pre-conditioning prior to damaging physical activity. STUDY APPRAISAL: Kmet appraisal system. SYNTHESIS METHODS: Quantitative analysis was conducted using forest plots to examine standardised mean differences (SMD, i.e. effect size), test statistics for statistical significance (i.e. Z-values) and between-study heterogeneity by inspecting I2. RESULTS: Following abstract and full-text screening, 23 articles were included in this paper. Based on the meta-analysis, the pre-conditioning group exhibited lower levels of creatine kinase at 24 h (SMD = - 1.64; Z = 8.39; p = 0.00001), 48 h (SMD = - 2.65; Z = 7.78; p = 0.00001), 72 h (SMD = - 2.39; Z = 5.71; p = 0.00001) and 96 h post-exercise (SMD = - 3.52; Z = 7.39; p = 0.00001) than the control group. Delayed-onset muscle soreness was also lower for the pre-conditioning group at 24 h (SMD = - 1.89; Z = 6.17; p = 0.00001), 48 h (SMD = - 2.50; Z = 7.99; p = 0.00001), 72 h (SMD = - 2.73; Z = 7.86; p = 0.00001) and 96 h post-exercise (SMD = - 3.30; Z = 8.47; p = 0.00001). Maximal voluntary contraction force was maintained and returned to normal sooner in the pre-conditioning group than in the control group, 24 h (SMD = 1.46; Z = 5.49; p = 0.00001), 48 h (SMD = 1.59; Z = 6.04; p = 0.00001), 72 h (SMD = 2.02; Z = 6.09; p = 0.00001) and 96 h post-exercise (SMD = 2.16; Z = 5.69; p = 0.00001). Range of motion was better maintained by the pre-conditioning group compared with the control group at 24 h (SMD = 1.48; Z = 4.30; p = 0.00001), 48 h (SMD = 2.20; Z = 5.64; p = 0.00001), 72 h (SMD = 2.66; Z = 5.42; p = 0.00001) and 96 h post-exercise (SMD = 2.5; Z = 5.46; p = 0.00001). Based on qualitative analyses, pre-conditioning activities were more effective when performed at 2-4 days before the muscle-damaging protocol compared with immediately prior to the muscle-damaging protocol, or 1-3 weeks prior to the muscle-damaging protocol. Furthermore, pre-conditioning activities performed using eccentric contractions over isometric contractions, with higher volumes, greater intensity and more lengthened muscle contractions provided greater protection from EIMD. LIMITATIONS: Several outcome measures showed high inter-study heterogeneity. The inability to account for differences in durations between pre-conditioning and the second bout of damaging physical activity was also limiting. CONCLUSIONS: Pre-conditioning significantly reduced the severity of creatine kinase release, delayed-onset muscle soreness, loss of maximal voluntary contraction force and the range of motion decrease. Pre-conditioning may prevent severe EIMD and accelerate recovery of muscle force generation capacity.


Asunto(s)
Músculo Esquelético , Mialgia , Humanos , Mialgia/prevención & control , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología , Terapia por Ejercicio , Contracción Muscular/fisiología , Contracción Isométrica , Creatina Quinasa
8.
Sports Med ; 49(5): 669-682, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30847824

RESUMEN

Whilst the "acute hypothesis" was originally coined to describe the detrimental effects of concurrent training on strength development, similar physiological processes may occur when endurance training adaptations are compromised. There is a growing body of research indicating that typical resistance exercises impair neuromuscular function and endurance performance during periods of resistance training-induced muscle damage. Furthermore, recent evidence suggests that the attenuating effects of resistance training-induced muscle damage on endurance performance are influenced by exercise intensity, exercise mode, exercise sequence, recovery and contraction velocity of resistance training. By understanding the influence that training variables have on the level of resistance training-induced muscle damage and its subsequent attenuating effects on endurance performance, concurrent training programs could be prescribed in such a way that minimises fatigue between modes of training and optimises the quality of endurance training sessions. Therefore, this review will provide considerations for concurrent training prescription for endurance development based on scientific evidence. Furthermore, recommendations will be provided for future research by identifying training variables that may impact on endurance development as a result of concurrent training.


Asunto(s)
Resistencia Física , Entrenamiento de Fuerza/métodos , Adaptación Fisiológica , Entrenamiento Aeróbico/métodos , Humanos , Contracción Muscular , Músculo Esquelético/fisiología , Descanso , Estrés Fisiológico , Factores de Tiempo
9.
Sports Med ; 47(11): 2187-2200, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28702901

RESUMEN

A single bout of resistance training induces residual fatigue, which may impair performance during subsequent endurance training if inadequate recovery is allowed. From a concurrent training standpoint, such carry-over effects of fatigue from a resistance training session may impair the quality of a subsequent endurance training session for several hours to days with inadequate recovery. The proposed mechanisms of this phenomenon include: (1) impaired neural recruitment patterns; (2) reduced movement efficiency due to alteration in kinematics during endurance exercise and increased energy expenditure; (3) increased muscle soreness; and (4) reduced muscle glycogen. If endurance training quality is consistently compromised during the course of a specific concurrent training program, optimal endurance development may be limited. Whilst the link between acute responses of training and subsequent training adaptation has not been fully established, there is some evidence suggesting that cumulative effects of fatigue may contribute to limiting optimal endurance development. Thus, the current review will (1) explore cross-sectional studies that have reported impaired endurance performance following a single, or multiple bouts, of resistance training; (2) identify the potential impact of fatigue on chronic endurance development; (3) describe the implications of fatigue on the quality of endurance training sessions during concurrent training, and (4) explain the mechanisms contributing to resistance training-induced attenuation on endurance performance from neurological, biomechanical and metabolic standpoints. Increasing the awareness of resistance training-induced fatigue may encourage coaches to consider modulating concurrent training variables (e.g., order of training mode, between-mode recovery period, training intensity, etc.) to limit the carry-over effects of fatigue from resistance to endurance training sessions.


Asunto(s)
Fatiga/prevención & control , Músculo Esquelético/fisiología , Resistencia Física/fisiología , Entrenamiento de Fuerza , Humanos , Fatiga Muscular
10.
PeerJ ; 4: e1841, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27069791

RESUMEN

This study examined the effects of cold-water immersion (CWI) and cold air therapy (CAT) on maximal cycling performance (i.e. anaerobic power) and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10) and female (n = 10) participants were randomised into either: CWI (15 min in 14 °C water to iliac crest) or CAT (15 min in 14 °C air) immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively). Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24), 48 (T48) and 72 (T72) h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05). However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90), T48 (8% ± 2%, ES = 0.64) and T72 (8% ± 7%, ES = 0.76). The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone.

11.
Front Physiol ; 7: 318, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27524970

RESUMEN

PURPOSE: While the intention of endurance athletes undertaking short term heat training protocols is to rapidly gain meaningful physical adaption prior to competition in the heat, it is currently unclear whether or not this process also presents an overt, acute challenge to the immune system. The aim of this study was therefore to examine the effects of heat training on both endurance performance and biomarkers associated with inflammatory and immune system responses. METHODS: Moderately-actively males (n = 24) were allocated randomly to either HOT (n = 8, 35°C, and 70% RH; NEUTRAL (n = 8, 20°C, and 45% RH); or a non-exercising control group, (CON, n = 8). Over the 18 day study HOT and NEUTRAL performed seven training sessions (40 min cycling at 55 of VO2 max) and all participants completed three heat stress tests (HST) at 35°C and 70% RH. The HST protocol comprised three × sub-maximal intervals followed by a 5 km time trial on a cycle ergometer. Serum samples were collected before and after each HST and analyzed for interleukin-6, immunoglobulin M and lipopolysaccharide. RESULTS: Both HOT and NEUTRAL groups experienced substantial improvement to 5 km time trial performance (HOT -33 ± 20 s, p = 0.02, NEUTRAL -39 ± 18 s, p = 0.01) but only HOT were faster (-45 ± 25 s, and -12 s ± 7 s, p = 0.01) in HST3 compared to baseline and HST2. Interleukin-6 was elevated after exercise for all groups however there were no significant changes for immunoglobulin M or lipopolysaccharide. CONCLUSIONS: Short-term heat training enhances 5 km cycling time trial performance in moderately-fit subjects by ~6%, similar in magnitude to exercise training in neutral conditions.Three top-up training sessions yielded a further 3% improvement in performance for the HOT group. Furthermore, the heat training did not pose a substantial challenge to the immune system.

12.
Sports Med ; 45(3): 303-11, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25380791

RESUMEN

Extreme environmental conditions present athletes with diverse challenges; however, not all sporting events are limited by thermoregulatory parameters. The purpose of this leading article is to identify specific instances where hot environmental conditions either compromise or augment performance and, where heat acclimation appears justified, evaluate the effectiveness of pre-event acclimation processes. To identify events likely to be receptive to pre-competition heat adaptation protocols, we clustered and quantified the magnitude of difference in performance of elite athletes competing in International Association of Athletics Federations (IAAF) World Championships (1999-2011) in hot environments (>25 °C) with those in cooler temperate conditions (<25 °C). Athletes in endurance events performed worse in hot conditions (~3 % reduction in performance, Cohen's d > 0.8; large impairment), while in contrast, performance in short-duration sprint events was augmented in the heat compared with temperate conditions (~1 % improvement, Cohen's d > 0.8; large performance gain). As endurance events were identified as compromised by the heat, we evaluated common short-term heat acclimation (≤7 days, STHA) and medium-term heat acclimation (8-14 days, MTHA) protocols. This process identified beneficial effects of heat acclimation on performance using both STHA (2.4 ± 3.5 %) and MTHA protocols (10.2 ± 14.0 %). These effects were differentially greater for MTHA, which also demonstrated larger reductions in both endpoint exercise heart rate (STHA: -3.5 ± 1.8 % vs MTHA: -7.0 ± 1.9 %) and endpoint core temperature (STHA: -0.7 ± 0.7 % vs -0.8 ± 0.3 %). It appears that worthwhile acclimation is achievable for endurance athletes via both short-and medium-length protocols but more is gained using MTHA. Conversely, it is also conceivable that heat acclimation may be counterproductive for sprinters. As high-performance athletes are often time-poor, shorter duration protocols may be of practical preference for endurance athletes where satisfactory outcomes can be achieved.


Asunto(s)
Aclimatación/fisiología , Rendimiento Atlético/fisiología , Calor , Regulación de la Temperatura Corporal/fisiología , Humanos , Resistencia Física/fisiología , Carrera/fisiología
14.
J Strength Cond Res ; 21(2): 354-61, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17530941

RESUMEN

Use of testosterone enanthate has been shown to significantly increase strength within 6-12 weeks of administration (2, 9), however, it is unclear if the ergogenic benefits are evident in less than 6 weeks. Testosterone enanthate is classified as a prohibited substance by the World Anti-Doping Agency (WADA) and its use may be detected by way of the urinary testosterone/epitestosterone (T/E) ratio (16). The two objectives of this study were to establish (a) if injection of 3.5 mg.kg(-1) testosterone enanthate once per week could increase muscular strength and cycle sprint performance in 3-6 weeks; and (b) if the WADA-imposed urinary T/E ratio of 4:1 could identify all subjects being administered 3.5 mg.kg(-1) testosterone enanthate. Sixteen healthy young men were match-paired and were assigned randomly in a double-blind manner to either a testosterone enanthate or a placebo group. All subjects performed a structured heavy resistance training program while receiving either testosterone enanthate (3.5 mg.kg(-1)) or saline injections once weekly for 6 weeks. One repetition maximum (1RM) strength measures and 10-second cycle sprint performance were monitored at the pre (week 0), mid (week 3), and post (week 6) time points. Body mass and the urinary T/E ratio were measured at the pre (week 0) and post (week 6) time points. When compared with baseline (pre), 1RM bench press strength and total work during the cycle sprint increased significantly at week 3 (p < 0.01) and week 6 (p < 0.01) in the testosterone enanthate group, but not in the placebo group. Body mass at week 6 was significantly greater than at baseline in the testosterone enanthate group (p < 0.01), but not in the placebo group. Despite the clear ergogenic effects of testosterone enanthate in as little as 3 weeks, 4 of the 9 subjects in the testosterone enanthate group ( approximately 44%) did not test positive to testosterone under current WADA urinary T/E ratio criteria.


Asunto(s)
Anabolizantes/farmacología , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Testosterona/análogos & derivados , Adulto , Anabolizantes/administración & dosificación , Análisis de Varianza , Doping en los Deportes , Método Doble Ciego , Prueba de Esfuerzo , Humanos , Masculino , Músculo Esquelético/metabolismo , Educación y Entrenamiento Físico , Testosterona/administración & dosificación , Testosterona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA