Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 388(24): 2253-2261, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37314706

RESUMEN

Hormone absence or inactivity is common in congenital disease, but hormone antagonism remains controversial. Here, we characterize two novel homozygous leptin variants that yielded antagonistic proteins in two unrelated children with intense hyperphagia, severe obesity, and high circulating levels of leptin. Both variants bind to the leptin receptor but trigger marginal, if any, signaling. In the presence of nonvariant leptin, the variants act as competitive antagonists. Thus, treatment with recombinant leptin was initiated at high doses, which were gradually lowered. Both patients eventually attained near-normal weight. Antidrug antibodies developed in the patients, although they had no apparent effect on efficacy. No severe adverse events were observed. (Funded by the German Research Foundation and others.).


Asunto(s)
Leptina , Obesidad Mórbida , Niño , Humanos , Anticuerpos , Homocigoto , Leptina/genética , Obesidad Mórbida/genética , Transducción de Señal
2.
EMBO Rep ; 24(12): e57912, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37818799

RESUMEN

The risk of developing severe COVID-19 rises dramatically with age. Schoolchildren are significantly less likely than older people to die from SARS-CoV-2 infection, but the molecular mechanisms underlying this age-dependence are unknown. In primary infections, innate immunity is critical due to the lack of immune memory. Children, in particular, have a significantly stronger interferon response due to a primed state of their airway epithelium. In single-cell transcriptomes of nasal turbinates, we find increased frequencies of immune cells and stronger cytokine-mediated interactions with epithelial cells, resulting in increased epithelial expression of viral sensors (RIG-I, MDA5) via IRF1. In vitro, adolescent peripheral blood mononuclear cells produce more cytokines, priming A549 cells for stronger interferon responses to SARS-CoV-2. Taken together, our findings suggest that increased numbers of immune cells in the airways of children and enhanced cytokine-based interactions with epithelial cells tune the setpoint of the epithelial antiviral system. Our findings shed light on the molecular basis of children's remarkable resistance to COVID-19 and may suggest a novel concept for immunoprophylactic treatments.


Asunto(s)
COVID-19 , SARS-CoV-2 , Niño , Adolescente , Humanos , Anciano , Leucocitos Mononucleares , Células Epiteliales , Interferones , Inmunidad Innata , Citocinas , Antivirales/farmacología , Antivirales/uso terapéutico
3.
Lancet Oncol ; 25(7): 922-932, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38936379

RESUMEN

BACKGROUND: Neuroblastoma is the most common extracranial solid tumour in children. Relapsed or refractory neuroblastoma is associated with a poor outcome. We assessed the combination of irinotecan-temozolomide and dasatinib-rapamycin (RIST) in patients with relapsed or refractory neuroblastoma. METHODS: The multicentre, open-label, randomised, controlled, phase 2, RIST-rNB-2011 trial recruited from 40 paediatric oncology centres in Germany and Austria. Patients aged 1-25 years with high-risk relapsed (defined as recurrence of all stage IV and MYCN amplification stages, after response to treatment) or refractory (progressive disease during primary treatment) neuroblastoma, with Lansky and Karnofsky performance status at least 50%, were assigned (1:1) to RIST (RIST group) or irinotecan-temozolomide (control group) by block randomisation, stratified by MYCN status. We compared RIST (oral rapamycin [loading 3 mg/m2 on day 1, maintenance 1 mg/m2 on days 2-4] and oral dasatinib [2 mg/kg per day] for 4 days with 3 days off, followed by intravenous irinotecan [50 mg/m2 per day] and oral temozolomide [150 mg/m2 per day] for 5 days with 2 days off; one course each of rapamycin-dasatinib and irinotecan-temozolomide for four cycles over 8 weeks, then two courses of rapamycin-dasatinib followed by one course of irinotecan-temozolomide for 12 weeks) with irinotecan-temozolomide alone (with identical dosing as experimental group). The primary endpoint of progression-free survival was analysed in all eligible patients who received at least one course of therapy. The safety population consisted of all patients who received at least one course of therapy and had at least one post-baseline safety assessment. This trial is registered at ClinicalTrials.gov, NCT01467986, and is closed to accrual. FINDINGS: Between Aug 26, 2013, and Sept 21, 2020, 129 patients were randomly assigned to the RIST group (n=63) or control group (n=66). Median age was 5·4 years (IQR 3·7-8·1). 124 patients (78 [63%] male and 46 [37%] female) were included in the efficacy analysis. At a median follow-up of 72 months (IQR 31-88), the median progression-free survival was 11 months (95% CI 7-17) in the RIST group and 5 months (2-8) in the control group (hazard ratio 0·62, one-sided 90% CI 0·81; p=0·019). Median progression-free survival in patients with amplified MYCN (n=48) was 6 months (95% CI 4-24) in the RIST group versus 2 months (2-5) in the control group (HR 0·45 [95% CI 0·24-0·84], p=0·012); median progression-free survival in patients without amplified MYCN (n=76) was 14 months (95% CI 9-7) in the RIST group versus 8 months (4-15) in the control group (HR 0·84 [95% CI 0·51-1·38], p=0·49). The most common grade 3 or worse adverse events were neutropenia (54 [81%] of 67 patients given RIST vs 49 [82%] of 60 patients given control), thrombocytopenia (45 [67%] vs 41 [68%]), and anaemia (39 [58%] vs 38 [63%]). Nine serious treatment-related adverse events were reported (five patients given control and four patients given RIST). There were no treatment-related deaths in the control group and one in the RIST group (multiorgan failure). INTERPRETATION: RIST-rNB-2011 demonstrated that targeting of MYCN-amplified relapsed or refractory neuroblastoma with a pathway-directed metronomic combination of a multkinase inhibitor and an mTOR inhibitor can improve progression-free survival and overall survival. This exclusive efficacy in MYCN-amplified, relapsed neuroblastoma warrants further investigation in the first-line setting. FUNDING: Deutsche Krebshilfe.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Dasatinib , Irinotecán , Recurrencia Local de Neoplasia , Neuroblastoma , Sirolimus , Temozolomida , Humanos , Temozolomida/administración & dosificación , Temozolomida/uso terapéutico , Irinotecán/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Masculino , Femenino , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/mortalidad , Neuroblastoma/patología , Neuroblastoma/genética , Preescolar , Niño , Dasatinib/administración & dosificación , Dasatinib/uso terapéutico , Dasatinib/efectos adversos , Adolescente , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Lactante , Adulto , Sirolimus/administración & dosificación , Sirolimus/uso terapéutico , Adulto Joven , Alemania , Resistencia a Antineoplásicos , Supervivencia sin Progresión
4.
Clin Immunol ; 259: 109891, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38185266

RESUMEN

For patients with inborn errors of immunity (IEI) and other inborn diseases, mixed donor chimerism is a well-accepted outcome of hematopoietic stem cell transplantation (HSCT). Cytoreductive chemotherapy for a secondary malignancy is a potential challenge for the stability of the graft function after HSCT. We report on a boy with X-SCID who developed Ewing sarcoma ten years after HSCT which was successfully treated with cytoreductive chemotherapy, surgery and local radiation. Surprisingly, this treatment had a positive impact on mixed chimerism with an increase of donor-cell proportions from 40% for neutrophils and 75% for non-T-mononuclear cells (MNCs) to >90% for both. T-cell counts remained stable with 100% of donor origin. This is -to our knowledge- the first report on the impact of cytoreductive chemotherapy on post-HSCT mixed chimerism and provides an important first impression for future patients.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Neoplasias , Masculino , Humanos , Quimerismo , Trasplante Homólogo , Donantes de Tejidos , Acondicionamiento Pretrasplante
5.
Blood ; 139(6): 859-875, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34662393

RESUMEN

Covalent Bruton tyrosine kinase (BTK) inhibitors, such as ibrutinib, have proven to be highly beneficial in the treatment of chronic lymphocytic leukemia (CLL). Interestingly, the off-target inhibition of IL-2-inducible T-cell kinase (ITK) by ibrutinib may also play a role in modulating the tumor microenvironment, potentially enhancing the treatment benefit. However, resistance to covalently binding BTK inhibitors can develop as the result of a mutation in cysteine 481 of BTK (C481S), which prevents irreversible binding of the drugs. In the present study we performed preclinical characterization of vecabrutinib, a next-generation noncovalent BTK inhibitor that has ITK-inhibitory properties similar to those of ibrutinib. Unlike ibrutinib and other covalent BTK inhibitors, vecabrutinib showed retention of the inhibitory effect on C481S BTK mutants in vitro, similar to that of wild-type BTK. In the murine Eµ-TCL1 adoptive transfer model, vecabrutinib reduced tumor burden and significantly improved survival. Vecabrutinib treatment led to a decrease in CD8+ effector and memory T-cell populations, whereas the naive populations were increased. Of importance, vecabrutinib treatment significantly reduced the frequency of regulatory CD4+ T cells in vivo. Unlike ibrutinib, vecabrutinib treatment showed minimal adverse impact on the activation and proliferation of isolated T cells. Lastly, combination treatment with vecabrutinib and venetoclax augmented treatment efficacy, significantly improved survival, and led to favorable reprogramming of the microenvironment in the murine Eµ-TCL1 model. Thus, noncovalent BTK/ITK inhibitors, such as vecabrutinib, may be efficacious in C481S BTK mutant CLL while preserving the T-cell immunomodulatory function of ibrutinib.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Leucemia Linfocítica Crónica de Células B , Inhibidores de Proteínas Quinasas , Proteínas Tirosina Quinasas , Animales , Femenino , Humanos , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Línea Celular Tumoral , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/patología , Ratones Endogámicos C57BL , Modelos Moleculares , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Carga Tumoral/efectos de los fármacos
6.
Blood ; 138(20): 1953-1965, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34098582

RESUMEN

We previously identified an association of rapid engraftment of patient-derived leukemia cells transplanted into NOD/SCID mice with early relapse in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In a search for the cellular and molecular profiles associated with this phenotype, we investigated the expression of microRNAs (miRNAs) in different engraftment phenotypes and patient outcomes. We found high expression of miR-497 and miR-195 (hereafter miR-497/195) in patient-derived xenograft samples with slow engraftment derived from patients with favorable outcome. In contrast, epigenetic repression and low expression of these miRNAs was observed in rapidly engrafting samples associated with early relapse. Overexpression of miR-497/195 in patient-derived leukemia cells suppressed in vivo growth of leukemia and prolonged recipient survival. Conversely, inhibition of miR-497/195 led to increased leukemia cell growth. Key cell cycle regulators were downregulated upon miR-497/195 overexpression, and we identified cyclin-dependent kinase 4 (CDK4)- and cyclin-D3 (CCND3)-mediated control of G1/S transition as a principal mechanism for the suppression of BCP-ALL progression by miR-497/195. The critical role for miR-497/195-mediated cell cycle regulation was underscored by finding (in an additional independent series of patient samples) that high expression of miR-497/195 together with a full sequence for CDKN2A and CDKN2B (CDKN2A/B) was associated with excellent outcome, whereas deletion of CDKN2A/B together with low expression of miR-497/195 was associated with clearly inferior relapse-free survival. These findings point to the cooperative loss of cell cycle regulators as a new prognostic factor indicating possible therapeutic targets for pediatric BCP-ALL.


Asunto(s)
Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , MicroARNs/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animales , Niño , Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Humanos , Ratones Endogámicos NOD , Ratones SCID , Células Tumorales Cultivadas
7.
Haematologica ; 108(8): 2080-2090, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36794500

RESUMEN

Therapy-resistant viral reactivations contribute significantly to mortality after hematopoietic stem cell transplantation. Adoptive cellular therapy with virus-specific T cells (VST) has shown efficacy in various single-center trials. However, the scalability of this therapy is hampered by laborious production methods. In this study we describe the in-house production of VST in a closed system (CliniMACS Prodigy® system, Miltenyi Biotec). In addition, we report the efficacy in 26 patients with viral disease following hematopoietic stem cell transplantation in a retrospective analysis (adenovirus, n=7; cytomegalovirus, n=8; Epstein-Barr virus, n=4; multi-viral, n=7). The production of VST was successful in 100% of cases. The safety profile of VST therapy was favorable (n=2 grade 3 and n=1 grade 4 adverse events; all three were reversible). A response was seen in 20 of 26 patients (77%). Responding patients had a significantly better overall survival than patients who did not respond (P<0.001). Virus-specific symptoms were reduced or resolved in 47% of patients. The overall survival of the whole cohort was 28% after 6 months. This study shows the feasibility of automated VST production and safety of application. The scalability of the CliniMACS Prodigy® device increases the accessibility of VST treatment.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Trasplante de Células Madre Hematopoyéticas , Virosis , Humanos , Linfocitos T , Infecciones por Virus de Epstein-Barr/terapia , Estudios Retrospectivos , Herpesvirus Humano 4 , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Virosis/etiología , Virosis/terapia , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre
8.
BMC Cancer ; 23(1): 1148, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007466

RESUMEN

BACKGROUND: Neuroblastoma (NB), the most common extracranial solid malignancy in children, carries a poor prognosis in high-risk disease, thus requiring novel therapeutic approaches. Survivin is overexpressed in NB, has pro-mitotic and anti-apoptotic functions, and impacts on oxidative phosphorylation (OXPHOS) and aerobic glycolysis. The subcellular localization and hence function of survivin is directed by the GTPase Ran. AIM: To determine efficacy and modes of action of the survivin-Ran inhibitor LLP-3 as a potential novel therapy of NB. METHODS: Survivin and Ran mRNA expression in NB tumors was correlated to patient survival. Response to LLP-3 in NB cell lines was determined by assays for viability, proliferation, apoptosis, clonogenicity and anchorage-independent growth. Interaction of survivin and Ran was assessed by proximity-linked ligation assay and their subcellular distribution by confocal immunofluorescence microscopy. Expression of survivin, Ran and proteins important for OXPHOS and glycolysis was determined by Western blot, hexokinase activity by enzymatic assay, interaction of survivin with HIF-1α by co-IP, and OXPHOS and glycolysis by extracellular flux analyzer. RESULTS: High mRNA expression of survivin and Ran is correlated with poor patient survival. LLP-3 decreases viability, induces apoptosis, and inhibits clonogenic and anchorage-independent growth in NB cell lines, including those with MYCN amplification, and mutations of p53 and ALK. LLP-3 inhibits interaction of survivin with Ran, decreasing their concentration both in the cytoplasm and the nucleus. LLP-3 impairs flexibility of energy metabolism by inhibiting both OXPHOS and glycolysis. Metabolic inhibition is associated with mitochondrial dysfunction and attenuated hexokinase activity but is independent of HIF-1α. CONCLUSION: LLP-3 attenuates interaction and concentration of survivin and Ran in NB cells. It controls NB cells with diverse genetic alterations, associated with inhibition of OXPHOS, aerobic glycolysis, mitochondrial function and HK activity. Thus, LLP-3 warrants further studies as a novel drug against NB.


Asunto(s)
Neuroblastoma , Fosforilación Oxidativa , Niño , Humanos , Survivin/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Línea Celular Tumoral , Apoptosis/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Glucólisis , ARN Mensajero/metabolismo , Proliferación Celular
9.
J Clin Immunol ; 42(2): 286-298, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34716846

RESUMEN

DNA damage is a constant event in every cell caused by exogenous factors such as ultraviolet and ionizing radiation (UVR/IR) and intercalating drugs, or endogenous metabolic and replicative stress. Proteins of the DNA damage response (DDR) network sense DNA lesions and induce cell cycle arrest, DNA repair, and apoptosis. Genetic defects of DDR or DNA repair proteins can be associated with immunodeficiency, bone marrow failure syndromes, and cancer susceptibility. Although various diagnostic tools are available to evaluate DNA damage, their quality to identify DNA repair deficiencies differs enormously and depends on affected pathways. In this study, we investigated the DDR biomarkers γH2AX (Ser139), p-ATM (Ser1981), and p-CHK2 (Thr68) using flow cytometry on peripheral blood cells obtained from patients with combined immunodeficiencies due to non-homologous end-joining (NHEJ) defects and ataxia telangiectasia (AT) in response to low-dose IR. Significantly reduced induction of all three markers was observed in AT patients compared to controls. However, delayed downregulation of γH2AX was found in patients with NHEJ defects. In contrast to previous reports of DDR in cellular models, these biomarkers were not sensitive enough to identify ARTEMIS deficiency with sufficient reliability. In summary, DDR biomarkers are suitable for diagnosing NHEJ defects and AT, which can be useful in neonates with abnormal TREC levels (T cell receptor excision circles) identified by newborn screening. We conclude that DDR biomarkers have benefits and some limitations depending on the underlying DNA repair deficiency.


Asunto(s)
Daño del ADN , Reparación del ADN , Biomarcadores , Citometría de Flujo , Humanos , Reproducibilidad de los Resultados
10.
Int J Obes (Lond) ; 46(11): 1939-1947, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35986215

RESUMEN

20 years ago, we described a human cell strain derived from subcutaneous adipose tissue of an infant supposed to have Simpson-Golabi-Behmel Syndrome (SGBS), thus called "SGBS cells". Since then, these cells have emerged as the most commonly used cell model for human adipogenesis and human adipocyte biology. Although these adipocyte derived stem cells have not been genetically manipulated for transformation or immortalization, SGBS cells retain their capacity to proliferate and to differentiate into adipocytes for more than 50 population doublings, providing an almost unlimited source of human adipocyte progenitor cells. Original data obtained with SGBS cells led to more than 200 peer reviewed publications comprising investigations on adipogenesis and browning, insulin sensitivity, inflammatory response, adipokine production, as well as co-culture models and cell-cell communication. In this article, we provide an update on the characterization of SGBS cells, present basic methods for their application and summarize results of a systematic literature search on original data obtained with this cell strain.


Asunto(s)
Adipocitos , Gigantismo , Humanos , Lactante , Adipoquinas , Biología
11.
Cell Mol Life Sci ; 78(6): 2987-3003, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33206203

RESUMEN

The pathogenesis of obesity-related metabolic diseases has been linked to the inflammation of white adipose tissue (WAT), but the molecular interconnections are still not fully understood. MiR-146a controls inflammatory processes by suppressing pro-inflammatory signaling pathways. The aim of this study was to characterize the role of miR-146a in obesity and insulin resistance. MiR-146a-/- mice were subjected to a high-fat diet followed by metabolic tests and WAT transcriptomics. Gain- and loss-of-function studies were performed using human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. Compared to controls, miR-146a-/- mice gained significantly more body weight on a high-fat diet with increased fat mass and adipocyte hypertrophy. This was accompanied by exacerbated liver steatosis, insulin resistance, and glucose intolerance. Likewise, adipocytes transfected with an inhibitor of miR-146a displayed a decrease in insulin-stimulated glucose uptake, while transfecting miR-146a mimics caused the opposite effect. Natriuretic peptide receptor 3 (NPR3) was identified as a direct target gene of miR-146a in adipocytes and CRISPR/Cas9-mediated knockout of NPR3 increased insulin-stimulated glucose uptake and enhanced de novo lipogenesis. In summary, miR-146a regulates systemic and adipocyte insulin sensitivity via downregulation of NPR3.


Asunto(s)
Resistencia a la Insulina , MicroARNs/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Adipocitos/citología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Antagomirs/metabolismo , Peso Corporal , Dieta Alta en Grasa , Hígado Graso/patología , Prueba de Tolerancia a la Glucosa , Humanos , Resistencia a la Insulina/genética , Lipogénesis , Hígado/metabolismo , Ratones , Ratones Noqueados , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo , Triglicéridos/metabolismo
12.
Emerg Infect Dis ; 27(12): 3009-3019, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695369

RESUMEN

Resolving the role of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in households with members from different generations is crucial for containing the current pandemic. We conducted a large-scale, multicenter, cross-sectional seroepidemiologic household transmission study in southwest Germany during May 11-August 1, 2020. We included 1,625 study participants from 405 households that each had ≥1 child and 1 reverse transcription PCR-confirmed SARS-CoV-2-infected index case-patient. The overall secondary attack rate was 31.6% and was significantly higher in exposed adults (37.5%) than in children (24.6%-29.2%; p = <0.015); the rate was also significantly higher when the index case-patient was >60 years of age (72.9%; p = 0.039). Other risk factors for infectiousness of the index case-patient were SARS-CoV-2-seropositivity (odds ratio [OR] 27.8, 95% CI 8.26-93.5), fever (OR 1.93, 95% CI 1.14-3.31), and cough (OR 2.07, 95% CI 1.21-3.53). Secondary infections in household contacts generate a substantial disease burden.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Niño , Estudios Transversales , Alemania/epidemiología , Humanos , Estudios Seroepidemiológicos
14.
Rheumatol Int ; 41(5): 911-920, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33683393

RESUMEN

Data on therapy of COVID-19 in immunocompetent and immunosuppressed children are scarce. We aimed to explore management strategies of pediatric rheumatologists. All subscribers to international Pediatric Rheumatology Bulletin Board were invited to take part in an online survey on therapeutic approaches to COVID-19 in healthy children and children with autoimmune/inflammatory diseases (AID). Off-label therapies would be considered by 90.3% of the 93 participating respondents. In stable patients with COVID-19 on oxygen supply (stage I), use of remdesivir (48.3%), azithromycin (26.6%), oral corticosteroids (25.4%) and/or hydroxychloroquine (21.9%) would be recommended. In case of early signs of "cytokine storm" (stage II) or in critically ill patients (stage III) (a) anakinra (79.5% stage II; 83.6% stage III) or tocilizumab (58.0% and 87.0%, respectively); (b) corticosteroids (oral 67.2% stage II, intravenously 81.7% stage III); (c) intravenous immunoglobulins (both stages 56.5%); or (d) remdesivir (both stages 46.7%) were considered. In AID, > 94.2% of the respondents would not support a preventive adaptation of the immunomodulating therapy. In case of mild COVID-19, more than 50% of the respondents would continue pre-existing treatment with immunoglobulins (100%), hydroxychloroquine (94.2%), anakinra (79.2%) or canakinumab (72.5%), or tocilizumab (69.8%). Long-term corticosteroids would be reduced by 26.9% (< = 2 mg/kg/d) and 50.0% (> 2 mg/kg/day), respectively, with only 5.8% of respondents voting to discontinue the therapy. Conversely, more than 75% of respondents would refrain from administering cyclophosphamide and anti-CD20-antibodies. As evidence on management of pediatric COVID-19 is incomplete, continuous and critical expert opinion and knowledge exchange is helpful.


Asunto(s)
Antirreumáticos/uso terapéutico , Antivirales/uso terapéutico , Enfermedades Autoinmunes/tratamiento farmacológico , Tratamiento Farmacológico de COVID-19 , Reumatología/métodos , Enfermedades Autoinmunes/complicaciones , COVID-19/epidemiología , Estudios de Casos y Controles , Niño , Humanos , Inmunomodulación , Pandemias , SARS-CoV-2 , Encuestas y Cuestionarios
15.
Clin Mol Allergy ; 19(1): 23, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789269

RESUMEN

BACKGROUND: Human plasmacytoid dendritic cells (pDC) have a dual role as interferon-producing and antigen-presenting cells. Their relevance for allergic diseases is controversial. and the impact of pDC on allergic immune responses is poorly understood. METHODS: This in vitro study on human pDC isolated from peripheral blood was designed to compare side by side the uptake of three clinically relevant representative allergens: fluorochrome-labeled house dust mite Der p 1, Bee venom extract from Apis mellifera (Api) and the food allergen OVA analyzed flow cytometry and confocal microscopy. RESULTS: We found that the internalization and its regulation by TLR9 ligation was significantly different between allergens in terms of time course and strength of uptake. Api and OVA uptake in pDC of healthy subjects was faster and reached higher levels than Der p 1 uptake. CpG ODN 2006 suppressed OVA uptake and to a lesser extent Der p 1, while Api internalization was not affected. All allergens colocalized with LAMP1 and EEA1, with Api being internalized particularly fast and reaching highest intracellular levels in pDC. Of note, we could not determine any specific differences in antigen uptake in allergic compared with healthy subjects. CONCLUSIONS: To our knowledge this is the first study that directly compares uptake regulation of clinically relevant inhalative, injective and food allergens in pDC. Our findings may help to explain differences in the onset and severity of allergic reactions as well as in the efficiency of AIT.

16.
Int J Cancer ; 146(11): 3219-3231, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31749151

RESUMEN

Second mitochondria-derived activator of caspase (SMAC) mimetics (SMs) targeting inhibitor of apoptosis proteins (IAPs) activate cell death pathways, and are currently being evaluated in clinical trials. Their successful therapeutic implementation requires upfront identification of patients who could benefit from a SM-based treatment but biomarkers for SM sensitivity have not yet been described. Here, we analyzed the intrinsic activity of two monovalent (AT406 and LCL161) and two bivalent (Birinapant and BV6) SMs on unselected patient-derived pediatric precursor B-cell acute lymphoblastic leukemia (BCP-ALL) identifying a subset of patient samples to be particularly sensitive to SM-induced cell death. This subset was defined by a characteristic gene expression signature with 127 differentially regulated genes, amongst them TNFRSF1A encoding TNFR1, and a critical role of TNFR1 in SM-induced cell death in sensitive BCP-ALL was confirmed on the functional level. Interestingly, samples with intermediate or low sensitivity to SMs were sensitized to SM-induced cell death by inhibition of caspases using zVAD.fmk or Emricasan, a pan-caspase inhibitor in clinical trials. When we compared our expression data to published data sets, we identified an overlap of four genes to be commonly differentially regulated in SM-sensitive BCP-ALL, that is, TSPAN7, DIPK1C, MTX2 and, again, TNFRSF1A. Functional testing revealed that this set of genes identified samples with high sensitivity to SM treatment. In summary, our data suggest using this gene signature as biomarker predicting response to SM treatment and point to the development of new combinatorial treatments consisting of SMs and pan-caspase inhibitors for a successful clinical implementation of SMs in treatment of BCP-ALL.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Azocinas/farmacología , Compuestos de Bencidrilo/farmacología , Dipéptidos/farmacología , Indoles/farmacología , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Proteínas Mitocondriales/antagonistas & inhibidores , Oligopéptidos/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Tiazoles/farmacología , Animales , Apoptosis/efectos de los fármacos , Inhibidores de Caspasas/farmacología , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Células Precursoras de Linfocitos B/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cancer Metastasis Rev ; 38(4): 673-682, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31832830

RESUMEN

Cancer is a leading cause of death in both adults and children, but in terms of absolute numbers, pediatric cancer is a relatively rare disease. The rarity of pediatric cancer is consistent with our current understanding of how adult malignancies form, emphasizing the view of cancer as a genetic disease caused by the accumulation and selection of unrepaired mutations over time. However, considering those children who develop cancer merely as stochastically "unlucky" does not fully explain the underlying aetiology, which is distinct from that observed in adults. Here, we discuss the differences in cancer genetics, distribution, and microenvironment between adult and pediatric cancers and argue that pediatric tumours need to be seen as a distinct subset with their own distinct therapeutic challenges. While in adults, the benefit of any treatment should outweigh mostly short-term complications, potential long-term effects have a much stronger impact in children. In addition, clinical trials must cope with low participant numbers when evaluating novel treatment strategies, which need to address the specific requirements of children.


Asunto(s)
Neoplasias/genética , Neoplasias/patología , Adulto , Factores de Edad , Animales , Niño , Humanos , Neoplasias/terapia , Pediatría/métodos , Microambiente Tumoral
18.
Br J Cancer ; 122(8): 1146-1157, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32115576

RESUMEN

BACKGROUND: Dysregulation of the metabolome is a hallmark of primary brain malignancies. In this work we examined whether metabolic reprogramming through a multi-targeting approach causes enhanced anti-cancer activity in glioblastoma. METHODS: Preclinical testing of a combined treatment with ONC201/TIC10 and 2-Deoxyglucose was performed in established and primary-cultured glioblastoma cells. Extracellular flux analysis was used to determine real-time effects on OXPHOS and glycolysis. Respiratory chain complexes were analysed by western blotting. Biological effects on tumour formation were tested on the chorioallantoic membrane (CAM). RESULTS: ONC201/TIC10 impairs mitochondrial respiration accompanied by an increase of glycolysis. When combined with 2-Deoxyglucose, ONC201/TIC10 induces a state of energy depletion as outlined by a significant decrease in ATP levels and a hypo-phosphorylative state. As a result, synergistic anti-proliferative and anti-migratory effects were observed among a broad panel of different glioblastoma cells. In addition, this combinatorial approach significantly impaired tumour formation on the CAM. CONCLUSION: Treatment with ONC201/TIC10 and 2-Deoxyglucose results in a dual metabolic reprogramming of glioblastoma cells resulting in a synergistic anti-neoplastic activity. Given, that both agents penetrate the blood-brain barrier and have been used in clinical trials with a good safety profile warrants further clinical evaluation of this therapeutic strategy.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Desoxiglucosa/farmacología , Metabolismo Energético/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Imidazoles/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Embrión de Pollo/efectos de los fármacos , Glioblastoma/metabolismo , Glioblastoma/patología , Glucólisis/efectos de los fármacos , Humanos , Fosforilación Oxidativa
19.
Blood ; 131(26): 2929-2942, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29622548

RESUMEN

The FOXO1 transcription factor plays an essential role in the regulation of proliferation and survival programs at early stages of B-cell differentiation. Here, we show that tightly regulated FOXO1 activity is essential for maintenance of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Genetic and pharmacological inactivation of FOXO1 in BCP-ALL cell lines produced a strong antileukemic effect associated with CCND3 downregulation. Moreover, we demonstrated that CCND3 expression is critical for BCP-ALL survival and that overexpression of CCND3 protected BCP-ALL cell lines from growth arrest and apoptosis induced by FOXO1 inactivation. Most importantly, pharmacological inhibition of FOXO1 showed antileukemia activity on several primary, patient-derived, pediatric ALL xenografts with effective leukemia reduction in the hematopoietic, lymphoid, and central nervous system organ compartments, ultimately leading to prolonged survival without leukemia reoccurrence in a preclinical in vivo model of BCP-ALL. These results suggest that repression of FOXO1 might be a feasible approach for the treatment of BCP-ALL.


Asunto(s)
Proteína Forkhead Box O1/genética , Regulación Leucémica de la Expresión Génica , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Animales , Antineoplásicos/uso terapéutico , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Linfocitos B/patología , Línea Celular Tumoral , Ciclina D3/genética , Proteína Forkhead Box O1/antagonistas & inhibidores , Proteína Forkhead Box O1/metabolismo , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones Endogámicos NOD , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolonas/uso terapéutico , Transducción de Señal/efectos de los fármacos
20.
Blood ; 132(5): 469-483, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-29891534

RESUMEN

Chuvash polycythemia is an autosomal recessive form of erythrocytosis associated with a homozygous p.Arg200Trp mutation in the von Hippel-Lindau (VHL) gene. Since this discovery, additional VHL mutations have been identified in patients with congenital erythrocytosis, in a homozygous or compound-heterozygous state. VHL is a major tumor suppressor gene, mutations in which were first described in patients presenting with VHL disease, which is characterized by the development of highly vascularized tumors. Here, we identify a new VHL cryptic exon (termed E1') deep in intron 1 that is naturally expressed in many tissues. More importantly, we identify mutations in E1' in 7 families with erythrocytosis (1 homozygous case and 6 compound-heterozygous cases with a mutation in E1' in addition to a mutation in VHL coding sequences) and in 1 large family with typical VHL disease but without any alteration in the other VHL exons. In this study, we show that the mutations induced a dysregulation of VHL splicing with excessive retention of E1' and were associated with a downregulation of VHL protein expression. In addition, we demonstrate a pathogenic role for synonymous mutations in VHL exon 2 that altered splicing through E2-skipping in 5 families with erythrocytosis or VHL disease. In all the studied cases, the mutations differentially affected splicing, correlating with phenotype severity. This study demonstrates that cryptic exon retention and exon skipping are new VHL alterations and reveals a novel complex splicing regulation of the VHL gene. These findings open new avenues for diagnosis and research regarding the VHL-related hypoxia-signaling pathway.


Asunto(s)
Exones , Predisposición Genética a la Enfermedad , Mutación , Policitemia/genética , Empalme del ARN , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/genética , Adolescente , Adulto , Niño , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Linaje , Policitemia/clasificación , Policitemia/patología , Adulto Joven , Enfermedad de von Hippel-Lindau/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA