Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Macromol Rapid Commun ; : e2400460, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39047164

RESUMEN

Catalyst-free, radical-based reactive processing is used to transform low-density polyethylene (LDPE) into polyethylene covalent adaptable networks (PE CANs) using a dialkylamino disulfide crosslinker, BiTEMPS methacrylate (BTMA). Two versions of BTMA are used, BTMA-S2, with nearly exclusively disulfide bridges, and BTMA-Sn, with a mixture of oligosulfide bridges, to produce S2 PE CAN and Sn PE CAN, respectively. The two PE CANs exhibit identical crosslink densities, but the S2 PE CAN manifests faster stress relaxation, with average relaxation times ∼4.5 times shorter than those of Sn PE CAN over a 130 to 160 °C temperature range. The more rapid dynamics of the S2 PE CAN translate into a shorter compression-molding reprocessing time at 160 °C of only 5 min (vs 30 min for the Sn PE CAN) to achieve full recovery of crosslink density. Both PE CANs are melt-extrudable and exhibit full recovery within experimental uncertainty of crosslink density after extrusion. Both PE CANs are self-healable, with a crack fully repaired and the original tensile properties restored after 30 min for the S2 PE CAN or 60 min for the Sn PE CAN at a temperature slightly above the LDPE melting point and without the assistance of external forces.

2.
Macromol Rapid Commun ; 44(8): e2300020, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36840963

RESUMEN

Natural fiber-reinforced composites are gaining increased interest for their significantly reduced carbon footprint compared to conventional glass or carbon fiber-based counterparts. In this study, natural fibers are used in a resorcinol-based epoxy resin that is thermally reshapable at higher temperatures (>180 °C) by using fast exchanging siloxane bonds, catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene. Stress relaxation times of only about 6 s at 220 °C can be reached. A resorcinol-based epoxy compound is selected because it can be derived from cellulose, opening ways for more sustainable and reshapable composite materials. In a last step of the research, the low viscosity vitrimer formulation (<200 mPa s) is applied to make a flax fiber-reinforced composite using an industrially relevant vacuum-assisted resin infusion process. A section of this composite is successfully reshaped, which allows for envisioning a second life for natural fiber-reinforced composites.


Asunto(s)
Lino , Siloxanos , Lino/química , Fibra de Carbono , Celulosa , Viscosidad
3.
J Am Chem Soc ; 144(27): 12280-12289, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35758403

RESUMEN

To develop siloxane-containing vitrimers with fast dynamic characteristics, different mechanistic pathways have been investigated using a range of catalysts. In particular, one siloxane exchange pathway has been found to show a fast dynamic behavior in a useful temperature range (180-220 °C) for its application in vitrimers. The mechanism is found to involve 1,5,7-triazabicyclo [4.4.0] dec-5-ene (TBD) as an organic catalyst in the presence of hydroxyl groups. Using this new mechanistic approach, vitrimers with ultrafast stress-relaxation characteristics (relaxation times below 10 s) have been prepared with a readily available epoxy resin and siloxane-amine hardener. Subsequently, the low viscosity siloxane-containing vitrimer resin enabled the preparation of glass fiber-reinforced vitrimer composites using an industrially relevant vacuum-assisted resin infusion technique. The resulting composite was successfully thermoformed into a new shape, which makes it possible to envision a second life for such highly engineered materials.


Asunto(s)
Siloxanos , Viscosidad
4.
Angew Chem Int Ed Engl ; 61(48): e202210405, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36161440

RESUMEN

Dynamic covalent polymer networks provide an interesting solution to the challenging recyclability of thermosets and elastomers. One of the remaining design constraints, however, is balancing thermal reprocessability in the form of material flow with dimensional stability during use. As a result, many chemistries are being investigated in order to improve bond reactivity control and material robustness. This Minireview highlights a number of promising concepts, with a particular emphasis on disconnecting chemical reactivity in low and high temperature regimes to obtain creep resistant, yet highly dynamic polymer networks. In addition, we will highlight the impact of sharp reactivity changes when applying extrapolation-based approaches during rheological analysis. As a result, we are confident that abandoning the myth of "permanent" reactivity will aid in the development of sustainable polymeric materials that can truly combine the benefits of thermoplastic and thermoset behaviour.

5.
Angew Chem Int Ed Engl ; 58(51): 18492-18495, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31509324

RESUMEN

The unsaturated bicyclic acetal levoglucosenyl methyl ether was readily obtained from sustainable feedstock (cellulose) and polymerized by cationic ring-opening polymerization to produce a semicrystalline thermoplastic unsaturated polyacetal with relatively high apparent molar mass (up to ca. 36 kg mol-1 ) and decent dispersity (ca. 1.4). The double bonds along the chain can undergo hydrogenation and thiol-ene reactions as well as crosslinking, thus making this polyacetal potentially interesting as a reactive functional material.

6.
Angew Chem Int Ed Engl ; 58(20): 6718-6721, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-30835937

RESUMEN

The readily available cellulose-derived bicyclic compound levoglucosenol was polymerized through ring-opening metathesis polymerization (ROMP) to yield polylevoglucosenol as a novel type of biomass-derived thermoplastic polyacetal, which, unlike polysaccharides, contains cyclic as well as linear segments in its main chain. High-molar-mass polyacetals with apparent weight-average molar masses of up to 100 kg mol-1 and dispersities of approximately 2 were produced despite the non-living/controlled character of the polymerization due to irreversible deactivation or termination of the catalyst/active chain ends. The resulting highly functionalized polyacetals are glassy in bulk with a glass transition temperature of around 100 °C. In analogy to polysaccharides, polylevoglucosenol degrades slowly in an acidic environment.


Asunto(s)
Biomasa , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Glucosa/análogos & derivados , Polimerizacion , Glucosa/química , Humanos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA