Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Am J Pathol ; 184(2): 520-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24269557

RESUMEN

Alzheimer disease (AD) is a progressive neurodegenerative disorder with associated memory loss, spatial disorientation, and other psychiatric problems. Cholinergic system dysfunction is an early and salient feature of AD, and enhancing cholinergic signaling with acetylcholinesterase inhibitors is currently the primary strategy for improving cognition. The beneficial effects of acetylcholinesterase inhibitors, however, are typically short-lived and accompanied by adverse effects. Recent evidence suggests that activating α7 nicotinic acetylcholine receptors (α7 nAChR) may facilitate the specific modulation of brain cholinergic signaling, leading to cognitive enhancement and possibly to amelioration of AD pathologic findings. In the present study, we determined the effect of long-term treatment with the selective α7 nAChR agonist A-582941 in aged 3xTg-AD mice with robust AD-like pathology, which is particularly significant not only because this is the only mouse model that co-develops amyloid plaques and neurofibrillary tangles but also because it enabled us to explore whether A-582941 is able to restore brain function after the severe damage associated with AD. Analysis of ß-amyloid deposits, tau phosphorylation, and inflammatory cells revealed that, overall, pathologic findings were unchanged. Rather, α7 nAChR activation induced expression of c-Fos and brain-derived neurotrophic factor and phosphorylation of cyclic adenosine monophosphate response element binding and neurotrophic tyrosine receptor kinase type 2. More important, A-582941 completely restored cognition in aged 3xTg-AD mice to the level of that in age-matched nontransgenic mice. These novel findings indicate that activating α7 nAChR is a promising treatment for cognitive impairment in AD.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Cognición/efectos de los fármacos , Ovillos Neurofibrilares/patología , Placa Amiloide/patología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Humanos , Inflamación/metabolismo , Inflamación/patología , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Transgénicos , Ovillos Neurofibrilares/efectos de los fármacos , Nootrópicos/farmacología , Fosforilación/efectos de los fármacos , Placa Amiloide/metabolismo , Placa Amiloide/fisiopatología , Piridazinas/farmacología , Pirroles/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Proteínas tau/metabolismo
2.
Mov Disord ; 30(14): 1901-1911, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26573698

RESUMEN

BACKGROUND: ABT-126 is a novel, safe, and well-tolerated α7 nicotinic receptor agonist in a Phase 2 Alzheimer's disease study. We tested the antidyskinetic effect of ABT-126 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated squirrel monkeys with moderate and more severe nigrostriatal damage. METHODS: Monkeys (n = 21, set 1) were lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 1-2×. When parkinsonian, they were gavaged with levodopa (10 mg/kg)/carbidopa (2.5 mg/kg) twice daily and dyskinesias rated. They were then given nicotine in drinking water (n = 5), or treated with vehicle (n = 6) or ABT-126 (n = 10) twice daily orally 30 min before levodopa. Set 1 was then re-lesioned 1 to 2 times for a total of 3 to 4 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine injections. The antidyskinetic effect of ABT-126, nicotine, and the ß2* nicotinic receptor agonist ABT-894 was re-assessed. Another group of monkeys (n = 23, set 2) were lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine only 1× to 2×. They were treated with levodopa/carbidopa, administered the α7 agonist ABT-107 (n = 6), ABT-894 (n = 6), nicotine (n = 5), or vehicle (n = 6) and dyskinesias evaluated. All monkeys were euthanized and the dopamine transporter measured. RESULTS: With moderate nigrostriatal damage (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 1×-2×), ABT-126 dose-dependently decreased dyskinesias (∼60%), with similar results seen with ABT-894 (∼60%) or nicotine (∼60%). With more severe damage (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 3-4×), ABT-126 and nicotine reduced dyskinesias, but ABT-894 did not. The dopamine transporter was 41% and 8.9% of control, with moderate and severe nigrostriatal damage, respectively. No drug modified parkinsonism. CONCLUSION: The novel α7 nicotinic receptor drug ABT-126 reduced dyskinesias in monkeys with both moderate and severe nigrostriatal damage. ABT-126 may be useful to reduce dyskinesias in both early- and later-stage Parkinson's disease.


Asunto(s)
Antiparkinsonianos/efectos adversos , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Levodopa/efectos adversos , Agonistas Nicotínicos/uso terapéutico , Trastornos Parkinsonianos/tratamiento farmacológico , Sustancia Negra/patología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Antiparkinsonianos/uso terapéutico , Discinesia Inducida por Medicamentos/patología , Femenino , Levodopa/uso terapéutico , Masculino , Agonistas Nicotínicos/farmacología , Trastornos Parkinsonianos/patología , Saimiri
3.
J Pharmacol Exp Ther ; 351(1): 25-32, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25034405

RESUMEN

Previous studies in Parkinsonian rats and monkeys have shown that ß2-selective nicotinic acetylcholine receptor (nAChR) agonists reduce l-Dopa-induced dyskinesias (LIDs), a serious complication of l-Dopa therapy for Parkinson's disease. Since rodent studies also suggested an involvement of α7 nAChRs in LIDs, we tested the effect of the potent, selective α7 agonist ABT-107 [5-(6-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy] pyridazin-3-yl)-1H-indole]. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-lesioned monkeys were gavaged with l-Dopa/carbidopa (10 and 2.5 mg/kg, respectively) twice daily, which resulted in stable LIDs. A dose-response study (0.03-1.0 mg/kg) showed that oral ABT-107 decreased LIDs by 40-60%. LIDs returned to control levels only after a 6-week ABT-107 washout, suggesting that long-term molecular changes were involved. Subsequent readministration of ABT-107 decreased LIDs by 50-60%, indicating that tolerance did not develop. ABT-107 had no effect on Parkinsonism or cognitive performance. We next tested ABT-107 together with the ß2 agonist ABT-894 [(3-(5,6-dichloro-pyridin-3-yl)-1(S),5 (S)-3,6-diazabicyclo[3.2.0]heptane], previously shown to reduce LIDs in Parkinsonian monkeys. In one study, the monkeys were first given oral ABT-894 (0.01 mg/kg), which maximally decreased LIDs by 50-60%; they were then also treated with 0.1 mg/kg ABT-107, a dose that maximally reduced LIDs. The effect of combined treatment on LIDs was similar to that with either drug alone. Comparable results were observed in a group of monkeys first treated with ABT-107 and then also given ABT-894. Thus, α7 and ß2 nAChR-selective drugs may function via a final common mechanism to reduce LIDs. The present results suggest that drugs targeting either α7 or ß2 nAChRs may be useful as antidyskinetic agents in Parkinson's disease.


Asunto(s)
Discinesia Inducida por Medicamentos/tratamiento farmacológico , Indoles/uso terapéutico , Intoxicación por MPTP/tratamiento farmacológico , Agonistas Nicotínicos/uso terapéutico , Quinuclidinas/uso terapéutico , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Animales , Antiparkinsonianos/efectos adversos , Femenino , Indoles/farmacología , Levodopa/efectos adversos , Masculino , Agonistas Nicotínicos/farmacología , Quinuclidinas/farmacología , Saimiri
4.
Mov Disord ; 29(4): 508-17, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24515328

RESUMEN

Levodopa-induced dyskinesias (LIDs) are a serious complication of levodopa therapy for Parkinson's disease for which there is little treatment. Accumulating evidence shows that nicotinic acetylcholine receptor (nAChR) drugs decrease LIDs in parkinsonian animals. Here, we examined the effect of two ß2 nAChR agonists, ABT-089 and ABT-894, that previously were approved for phase 2 clinical trials for other indications. Two sets of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys were administered levodopa/carbidopa (10 mg/kg and 2.5 mg/kg, respectively) twice daily 5 days a week until they were stably dyskinetic. Each set had a vehicle-treated group, an nAChR agonist-treated group, and a nicotine-treated group as a positive control. Set A monkeys had previously received other nAChR drugs (nAChR drug-primed), whereas Set B monkeys were initially nAChR drug-naive. Both sets were administered the partial agonist ABT-089 (range, 0.01-1.0 mg/kg) orally 5 days a week twice daily 30 minutes before levodopa with each dose given for 1 to 5 weeks. ABT-089 decreased LIDs by 30% to 50% compared with vehicle-treated monkeys. Nicotine reduced LIDs by 70% in a parallel group. After 4 weeks of washout, the effect of the full agonist ABT-894 (range, 0.0001-0.10 mg/kg) was assessed on LIDs in Set A and Set B. ABT-894 reduced LIDs by 70%, similar to nicotine. Both drugs acted equally well at α4ß2* and α6ß2* nAChRs; however, ABT-089 was 30 to 60 times less potent than ABT-894. Tolerance did not develop for the time periods tested (range, 3-4 months). The nAChR drugs did not worsen parkinsonism or cognitive ability. Emesis, a common problem with nAChR drugs, was not observed. ABT-894 and ABT-089 appear to be good candidate nAChR drugs for the management of LIDs in Parkinson's disease.


Asunto(s)
Antiparkinsonianos/efectos adversos , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Levodopa/efectos adversos , Intoxicación por MPTP/tratamiento farmacológico , Agonistas Nicotínicos/uso terapéutico , Piridinas/uso terapéutico , Pirrolidinas/uso terapéutico , Animales , Antiparkinsonianos/uso terapéutico , Femenino , Levodopa/uso terapéutico , Masculino , Saimiri , Resultado del Tratamiento
5.
J Neurosci ; 30(9): 3518-30, 2010 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-20203212

RESUMEN

One-second-long increases in prefrontal cholinergic activity ("transients") were demonstrated previously to be necessary for the incorporation of cues into ongoing cognitive processes ("cue detection"). Nicotine and, more robustly, selective agonists at alpha4beta2* nicotinic acetylcholine receptors (nAChRs) enhance cue detection and attentional performance by augmenting prefrontal cholinergic activity. The present experiments determined the role of beta2-containing and alpha7 nAChRs in the generation of prefrontal cholinergic and glutamatergic transients in vivo. Transients were evoked by nicotine, the alpha4beta2* nAChR agonist ABT-089 [2-methyl-3-(2-(S)-pyrrolindinylmethoxy) pyridine dihydrochloride], or the alpha7 nAChR agonist A-582941 [2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole]. Transients were recorded in mice lacking beta2 or alpha7 nAChRs and in rats after removal of thalamic glutamatergic or midbrain dopaminergic inputs to prefrontal cortex. The main results indicate that stimulation of alpha4beta2* nAChRs evokes glutamate release and that the presence of thalamic afferents is necessary for the generation of cholinergic transients. ABT-089-evoked transients were completely abolished in mice lacking beta2* nAChRs. The amplitude, but not the decay rate, of nicotine-evoked transients was reduced by beta2* knock-out. Conversely, in mice lacking the alpha7 nAChR, the decay rate, but not the amplitude, of nicotine-evoked cholinergic and glutamatergic transients was attenuated. Substantiating the role of alpha7 nAChR in controlling the duration of release events, stimulation of alpha7 nAChR produced cholinergic transients that lasted 10- to 15-fold longer than those evoked by nicotine. alpha7 nAChR-evoked cholinergic transients are mediated in part by dopaminergic activity. Prefrontal alpha4beta2* nAChRs play a key role in evoking and facilitating the transient glutamatergic-cholinergic interactions that are necessary for cue detection and attentional performance.


Asunto(s)
Acetilcolina/metabolismo , Ácido Glutámico/metabolismo , Corteza Prefrontal/metabolismo , Receptores Nicotínicos/metabolismo , Transmisión Sináptica/fisiología , Vías Aferentes/anatomía & histología , Vías Aferentes/metabolismo , Vías Aferentes/cirugía , Animales , Desnervación , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Agonistas Nicotínicos/farmacología , Terminales Presinápticos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/genética , Transducción de Señal/fisiología , Sinapsis/genética , Sinapsis/metabolismo , Tálamo/anatomía & histología , Tálamo/metabolismo , Tálamo/cirugía , Factores de Tiempo , Área Tegmental Ventral/anatomía & histología , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/cirugía , Receptor Nicotínico de Acetilcolina alfa 7
6.
J Pharmacol Exp Ther ; 336(3): 716-23, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21172907

RESUMEN

Neuronal acetylcholine nicotinic receptors (nAChRs) are targets for the development of novel treatments of brain diseases. However, adverse effects (for example, emesis or nausea) associated with high drug maximal exposures or C(max) at nAChRs often hinder the advancement of experimental compounds in clinical trials. Therefore, it is essential to explore the feasibility of maintaining exposures below a predetermined C(max) while sustaining targeted CNS effects. By use of a [¹²³I]5-IA [5-[¹²³I]iodo-3-[2(S)-azetidinylmethoxy]pyridine] displacement SPECT imaging paradigm in nonhuman primates, we compared brain nAChR binding activity elicited by either a bolus injection or by slow infusion of an identical dose of a novel neuronal nicotinic agonist, ABT-089 [2-methyl-3-(2-(S)-pyrrolidinylmethoxy)pyridine dihydrochloride], where the slow infusion scheme was derived from a two-compartment pharmacokinetic modeling designed to limit the C(max). We determined [¹²³I]5-IA displacement using doses of ABT-089 (0.04, 0.4, and 1.0 mg/kg i.v.) that encompassed efficacious drug exposures in nonhuman primates and examined the relationship between ABT-089 displacement ratios and plasma exposures. Our results indicated that calculated displacement ratios were quite similar between the two different dosing regimens despite substantial differences in C(max). In addition, displacement ratios correlated well with drug exposures calculated as the area-under-curve (AUC) of plasma concentration and varied in a dose-dependent manner, suggesting that displacement ratios are driven by the AUC of drug plasma exposure but not C(max). Our data demonstrate the feasibility of predicting plasma exposures using a two-compartment pharmacokinetic model and its potential for optimizing dosing regimens.


Asunto(s)
Azetidinas/farmacocinética , Encéfalo/diagnóstico por imagen , Modelos Biológicos , Piridinas/administración & dosificación , Piridinas/farmacocinética , Pirrolidinas/administración & dosificación , Pirrolidinas/farmacocinética , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Papio , Papio anubis
7.
J Pharmacol Exp Ther ; 334(3): 875-86, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20504913

RESUMEN

We previously reported that alpha7 nicotinic acetylcholine receptor (nAChR) agonism produces efficacy in preclinical cognition models correlating with activation of cognitive and neuroprotective signaling pathways associated with Alzheimer's disease (AD) pathology. In the present studies, the selective and potent alpha7 nAChR agonist 5-(6-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy] pyridazin-3-yl)-1H-indole (ABT-107) was evaluated in behavioral assays representing distinct cognitive domains. Studies were also conducted to address potential issues that may be associated with the clinical development of an alpha7 nAChR agonist. Specifically, ABT-107 improved cognition in monkey delayed matching to sample, rat social recognition, and mouse two-trial inhibitory avoidance, and continued to improve cognitive performance at injection times when exposure levels continued to decline. Rats concurrently infused with ABT-107 and donepezil at steady-state levels consistent with clinical exposure showed improved short-term recognition memory. Compared with nicotine, ABT-107 did not produce behavioral sensitization in rats or exhibit psychomotor stimulant activity in mice. Repeated (3 days) daily dosing of ABT-107 increased extracellular cortical acetylcholine in rats, whereas acute administration increased cortical extracellular signal-regulated kinase and cAMP response element-binding protein phosphorylation in mice, neurochemical and biochemical events germane to cognitive function. ABT-107 increased cortical phosphorylation of the inhibitory residue (Ser9) of glycogen synthase kinase-3, a primary tau kinase associated with AD pathology. In addition, continuous infusion of ABT-107 in tau/amyloid precursor protein transgenic AD mice reduced spinal tau hyperphosphorylation. These findings show that targeting alpha7 nAChRs may have potential utility for symptomatic alleviation and slowing of disease progression in the treatment AD, and expand the understanding of the potential therapeutic viability associated with the alpha7 nAChR approach in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/efectos de los fármacos , Acetilcolina/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/psicología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/toxicidad , Animales , Reacción de Prevención/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Cognición/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Donepezilo , Electroencefalografía/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Indanos/farmacología , Indoles/farmacocinética , Indoles/farmacología , Macaca mulatta , Masculino , Ratones , Ratones Noqueados , Agonistas Nicotínicos/farmacocinética , Nootrópicos/farmacología , Fosforilación , Piperidinas/farmacología , Desempeño Psicomotor/efectos de los fármacos , Quinuclidinas/farmacocinética , Quinuclidinas/farmacología , Ratas , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos , Percepción Social , Receptor Nicotínico de Acetilcolina alfa 7 , Proteínas tau/genética , Proteínas tau/toxicidad
8.
J Neurosci ; 28(14): 3769-80, 2008 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-18385335

RESUMEN

Because modulation of cortical cholinergic neurotransmission has been hypothesized to represent a necessary mechanism mediating the beneficial cognitive effects of nicotine and nicotinic acetylcholine receptor (nAChR) subtype-selective agonists, we used choline-sensitive microelectrodes for the real-time measurement of ACh release in vivo, to characterize cholinergic transients evoked by nicotine and the alpha4beta2*-selective nAChR partial agonist 2-methyl-3-(2-(S)-pyrrolindinylmethoxy)pyridine dihydrochloride (ABT-089), a clinically effective cognition enhancer. In terms of cholinergic signal amplitudes, ABT-089 was significantly more potent than nicotine in evoking ACh cholinergic transients. Moreover, cholinergic signals evoked by ABT-089 were characterized by faster signal rise time and decay rate. The nAChR antagonist mecamylamine attenuated the cholinergic signals evoked by either compound. Cholinergic signals evoked by ABT-089 were more efficaciously attenuated by the relatively beta2*-selective nAChR antagonist dihydro-beta-erythroidine. The alpha7 antagonist methyllycaconitine did not affect choline signal amplitudes but partly attenuated the relatively slow decay rate of nicotine-evoked cholinergic signals. Furthermore, the AMPA receptor antagonist DNQX as well as the NMDA receptor antagonist APV more potently attenuated cholinergic signals evoked by ABT-089. Using glutamate-sensitive microelectrodes to measure glutamatergic transients, ABT-089 was more potent than nicotine in evoking glutamate release. Glutamatergic signals were highly sensitive to tetrodotoxin-induced blockade of voltage-regulated sodium channels. Together, the present evidence indicates that compared with nicotine, ABT-089 evokes more potent and sharper cholinergic transients in prefrontal cortex. Glutamatergic mechanisms necessarily mediate the cholinergic effects of nAChR agonists in the prefrontal cortex.


Asunto(s)
Acetilcolina/metabolismo , Ácido Glutámico/metabolismo , Agonistas Nicotínicos/farmacología , Corteza Prefrontal/efectos de los fármacos , Piridinas/farmacología , Pirrolidinas/farmacología , Análisis de Varianza , Animales , Colina/metabolismo , Dihidro-beta-Eritroidina/farmacología , Relación Dosis-Respuesta a Droga , Electroquímica/métodos , Potenciales Evocados/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Masculino , Mecamilamina/farmacología , Neostigmina/farmacología , Nicotina/farmacología , Antagonistas Nicotínicos/farmacología , Quinoxalinas/farmacología , Ratas , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Valina/análogos & derivados , Valina/farmacología
9.
J Neurosci ; 27(39): 10578-87, 2007 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-17898229

RESUMEN

The alpha7 nicotinic acetylcholine receptor (nAChR) plays an important role in cognitive processes and may represent a drug target for treating cognitive deficits in neurodegenerative and psychiatric disorders. In the present study, we used a novel alpha7 nAChR-selective agonist, 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941) to interrogate cognitive efficacy, as well as examine potential cellular mechanisms of cognition. Exhibiting high affinity to native rat (Ki = 10.8 nM) and human (Ki = 16.7 nM) alpha7 nAChRs, A-582941 enhanced cognitive performance in behavioral assays including the monkey delayed matching-to-sample, rat social recognition, and mouse inhibitory avoidance models that capture domains of working memory, short-term recognition memory, and long-term memory consolidation, respectively. In addition, A-582941 normalized sensory gating deficits induced by the alpha7 nAChR antagonist methyllycaconitine in rats, and in DBA/2 mice that exhibit a natural sensory gating deficit. Examination of signaling pathways known to be involved in cognitive function revealed that alpha7 nAChR agonism increased extracellular-signal regulated kinase 1/2 (ERK1/2) phosphorylation in PC12 cells. Furthermore, increases in ERK1/2 and cAMP response element-binding protein (CREB) phosphorylation were observed in mouse cingulate cortex and/or hippocampus after acute A-582941 administration producing plasma concentrations in the range of alpha7 binding affinities and behavioral efficacious doses. The MEK inhibitor SL327 completely blocked alpha7 agonist-evoked ERK1/2 phosphorylation. Our results demonstrate that alpha7 nAChR agonism can lead to broad-spectrum efficacy in animal models at doses that enhance ERK1/2 and CREB phosphorylation/activation and may represent a mechanism that offers potential to improve cognitive deficits associated with neurodegenerative and psychiatric diseases, such as Alzheimer's disease and schizophrenia.


Asunto(s)
Fármacos del Sistema Nervioso Central/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Procesos Mentales/efectos de los fármacos , Receptores Nicotínicos , Aminoacetonitrilo/análogos & derivados , Aminoacetonitrilo/farmacología , Animales , Cognición/efectos de los fármacos , Cognición/fisiología , Humanos , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Macaca mulatta , Masculino , Procesos Mentales/fisiología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Piridazinas/farmacología , Pirroles/farmacología , Ratas , Transducción de Señal , Resultado del Tratamiento , Xenopus , Receptor Nicotínico de Acetilcolina alfa 7
10.
Biochem Pharmacol ; 74(8): 1212-23, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17689498

RESUMEN

Attention deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed neurobehavioral disorder in children and adolescents, and in about half of these patients, significant symptomology continues into adulthood. Although impulsivity and hyperactivity are the most salient features of ADHD, cognitive deficits, particularly impairments in attention and executive function, are an important component, particularly in adolescents and adults, with over 90% of adults seeking treatment for ADHD manifesting cognitive dysfunction. Currently available medications treat the core ADHD symptoms but typically do not adequately address cognitive aspects of ADHD, underscoring the need for new therapeutics. Dopamine and norepinephrine are hypothesized to be particularly important in ADHD, but there is emerging evidence that cholinergic neurotransmission, particularly involving neuronal nicotinic acetylcholine receptors (nAChRs), may play a role in the pathophysiology of ADHD. Nicotine has demonstrated procognitive effects in both humans and experimental animals and has produced signals of efficacy in small proof-of-concept adult ADHD trials. Although adverse effects associated with nicotine preclude its development as a therapeutic, a number of novel nAChR agonists with improved safety/tolerability profiles have been discovered. Of these, ABT-418 and ABT-089 have both demonstrated signals of efficacy in adults with ADHD. Notably, tolerability issues that might be expected of a nAChR agonist, such as nausea and emesis, were not observed at efficacious doses of ABT-089. Further understanding of the effects of novel neuronal nAChR agonists on specific aspects of cognitive functioning in ADHD is required to assess the full potential of this approach.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Cognición/efectos de los fármacos , Isoxazoles/uso terapéutico , Agonistas Nicotínicos/uso terapéutico , Piridinas/uso terapéutico , Pirrolidinas/uso terapéutico , Animales , Humanos , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/fisiología , Transmisión Sináptica
11.
Biochem Pharmacol ; 74(8): 1202-11, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17706609

RESUMEN

ABT-594 and A-582941 are high affinity neuronal nicotinic acetylcholine receptor agonists with differential selectivity for the alpha4beta2 and the alpha7 subtypes, respectively. This study was designed to determine whether either compound, like nicotine also possesses cognitive-enhancing ability. The compounds were administered by intramuscular injection to young adult Rhesus monkeys trained to perform two versions of a computer-assisted delayed matching-to-sample (DMTS) task. ABT-594 (0.115-3.7 microg/kg) significantly improved DMTS accuracies, shifting the retention curve (accuracy-delay relationship) to the right in a parallel fashion. DMTS accuracy also was maintained during the sessions initiated 24h after compound administration. Because task accuracy was improved during short delay trials, a separate study was performed in which non-predictable distractors were inserted within the DMTS format to impair accuracy. The 0.115 microg/kg dose of ABT-594 almost completely reversed distractor-impaired performance associated with short delay trials. The alpha7 nAChR agonist, A-582941 (1.14-38 microg/kg) also significantly improved DMTS accuracies. The compound produced a significant improvement during long delay trials. The effect was twice as robust for long delay as compared with short delay trials and A-582941 was not as effective as ABT-594 in improving short delay trial accuracy. A-582941 also failed to sustain task improvement during sessions run 24h after dosing. These data are consistent with the ability of subtype-preferring nicotinic receptor agonists to enhance specific components of working memory and cognitive function, and they suggest that differential subtype selectivity could result in varied pharmacological response profiles.


Asunto(s)
Azetidinas/farmacología , Cognición/efectos de los fármacos , Agonistas Nicotínicos/farmacología , Piridazinas/farmacología , Piridinas/farmacología , Pirroles/farmacología , Receptores Nicotínicos/efectos de los fármacos , Animales , Conducta de Elección , Relación Dosis-Respuesta a Droga , Macaca mulatta , Masculino , Desempeño Psicomotor/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7
12.
Biochem Pharmacol ; 73(8): 1123-34, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17214974

RESUMEN

Deficits in attention and response inhibition are apparent across several neurodegenerative and neuropsychiatric disorders for which current pharmacotherapy is inadequate. While it is difficult to model such executive processes in animals, the 5-choice serial reaction time test (5-CSRTT), which originated from the continuous performance test (CPT) in humans, may serve as a useful translational assay for efficacy in these key behavioral domains. At Wyeth and Abbott, we recently investigated the utility of employing the 5-CSRTT in adult rats. This involved training and testing groups of rats over an extended period of several months and required the animals to learn to nose-poke into one of five apertures following presentation of a brief visual stimulus in that aperture in order to obtain a food reward. When the stimulus duration was short, the rat had to pay close attention to make a correct choice--a nose-poke into the aperture with the brief visual stimulus. We evaluated nicotine and the histamine H(3) receptor antagonist, ciproxifan, since compounds targeting both nicotinic and histaminergic neurotransmission are currently under investigation for treating cognitive dysfunction in ADHD, AD and schizophrenia. After approximately 12 weeks of training, rats were tested with drug when they had achieved stable performance. Nicotine (0.2, 0.4 mg/kg s.c.) significantly improved accuracy and reduced errors of omission (reflecting improved attention and vigilance) when baseline performance was <90% correct. In contrast, nicotine tended to worsen accuracy when baseline performance was >90% correct. Using the same test paradigm, ciproxifan (3mg/kg i.p.) reduced premature responding, a measure of impulsivity. Under conditions of variable stimulus duration, ciproxifan also improved accuracy and decreased impulsivity. In summary, we have replicated previous findings by others of positive effects of nicotine on attention, but also showed that this is dependent on baseline performance. We also expanded on previous positive findings by others with ciproxifan on attention and both Wyeth and Abbott demonstrate for the first time decreased impulsivity with this mechanism.


Asunto(s)
Atención/efectos de los fármacos , Conducta de Elección/efectos de los fármacos , Imidazoles/farmacología , Conducta Impulsiva/fisiopatología , Nicotina/farmacología , Tiempo de Reacción/efectos de los fármacos , Animales , Atención/fisiología , Conducta de Elección/fisiología , Interacciones Farmacológicas , Antagonistas de los Receptores Histamínicos/farmacología , Masculino , Desempeño Psicomotor/efectos de los fármacos , Ratas , Ratas Long-Evans , Tiempo de Reacción/fisiología
13.
Psychopharmacology (Berl) ; 190(1): 1-11, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17093979

RESUMEN

RATIONALE: Neuroleptic dysphoria encompasses a range of unpleasant subjective responses and, as a result, is difficult to study in preclinical animal models. OBJECTIVE: Based on the learned helplessness model of depression, increases in escape failures (EFs) in the drug-induced helplessness test (DH) are proposed to reflect drug-induced depressive-like state, a contributing factor to neuroleptic dysphoria in humans. MATERIALS AND METHODS: Effects of the typical antipsychotic haloperidol and the atypical antipsychotics risperidone, olanzapine, aripiprazole, quetiapine, and clozapine were investigated in the DH test. We further characterized this test by examining compounds affecting motor function, cognition, anxiety, and those with antidepressant activity. RESULTS: The antipsychotics haloperidol, risperidone, aripiprazole, and olanzapine, all increased EFs, while quetiapine had no effect, and clozapine reduced EFs. Amphetamine, diazepam, and ciproxifan, had no effect on EFs. Scopolamine significantly reduced EFs and MK-801 showed a trend toward reducing EFs at doses not significantly sti mulating locomotor activity. Subchronic, but not acute, imipramine and subchronic fluoxetine significantly reduced EFs at doses significantly suppressing locomotor activity. Dissociation appears to exist between performance in the DH test and compound effects on catalepsy or locomotor activity. CONCLUSIONS: After discussing potential alternative interpretations of the drug-induced changes of EFs, we propose the DH test as a useful test for assessing a drug-induced, depressive-like state that may contribute to neuroleptic dysphoria.


Asunto(s)
Afecto/efectos de los fármacos , Antidepresivos/farmacología , Antipsicóticos/toxicidad , Modelos Animales de Enfermedad , Reacción de Fuga/efectos de los fármacos , Desamparo Adquirido , Motivación , Animales , Antipsicóticos/antagonistas & inhibidores , Nivel de Alerta/efectos de los fármacos , Reacción de Prevención/efectos de los fármacos , Concienciación/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Actividad Motora/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos
14.
Behav Brain Res ; 182(1): 1-11, 2007 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-17570538

RESUMEN

Rats treated with apomorphine and amphetamine display sensorimotor gating impairments, as measured by prepulse inhibition (PPI), and these impairments can be reversed by antipsychotic treatment. However, it remains unknown whether the dopamine (DA) D(3) receptor plays a role in mediating these effects on PPI, as none of these DA agonists or antipsychotics are exclusively selective at either D(2) or D(3) receptors. To address this question, the current study was designed to investigate whether antipsychotic drugs and selective D(3) antagonists could block the PPI-disruptive effects of PD 128907 (a preferential D(3) agonist) and apomorphine. We found that the effect of PD 128907 on PPI in rats could be antagonized by risperidone, clozapine, and the selective D(3) antagonists SB 277011 and A-691990, but not by raclopride or haloperidol, while the apomorphine-induced PPI deficit could be reversed by risperidone, clozapine and haloperidol, but not by SB 2770111 and A-691990. These results suggest that the D(3) receptor does not mediate apomorphine-induced disruption of PPI in rats, however, given the findings that PD 128907 elicited a PPI-disruptive effect that was blocked by selective D(3) antagonists, a role of D(3) receptor in mediating PPI in rats cannot be ruled out. The possible mechanisms of D(3) receptor involvement in PPI are discussed.


Asunto(s)
Antipsicóticos/farmacología , Apomorfina/farmacología , Benzopiranos/farmacología , Agonistas de Dopamina/farmacología , Inhibición Psicológica , Oxazinas/farmacología , Reflejo de Sobresalto/efectos de los fármacos , Estimulación Acústica/métodos , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos , Antagonistas de Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Masculino , Nitrilos/farmacología , Ratas , Ratas Wistar , Tetrahidroisoquinolinas/farmacología
15.
Neuropsychopharmacology ; 31(7): 1382-92, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16395300

RESUMEN

Schizophrenic patients typically exhibit impairment of sensorimotor gating, which can be modeled in animal models such as the test of prepulse inhibition of startle response (PPI) in rodents. It has been found that antipsychotics enhanced PPI in DBA mice and reversed the PPI deficit induced by neonatal ventral hippocampal (NVH) lesions in rats. However, the relative involvement of D(3) and D(2) receptors in these effects is unknown since all antipsychotics are D(2)/D(3) antagonists with limited binding preference at D(2) receptors. Therefore, in the current study, we investigated the influence of several dopamine antagonists with higher selectivity at D(3) vs D(2) receptors on PPI in DBA/2J mice and in NVH-lesioned rats. The PPI in DBA/2J mice was enhanced by the nonselective D(2)/D(3) antagonists, haloperidol at 0.3-3 mg/kg, or risperidone at 0.3-1 mg/kg, while PPI-enhancing effects were observed after the administration of higher doses of the preferential D(3)/D(2) antagonist, BP 897 at 8 mg/kg, and the selective D(3) antagonists, SB 277011 at 30 mg/kg and A-437203 at 30 mg/kg. No effect was observed following the treatment with the selective D(3) antagonist, AVE 5997 up to 30 mg/kg. The PPI deficits induced by NVH lesions were reversed by haloperidol but not by the more selective D(3) antagonists, A-437203 and AVE 5997. BP 897 enhanced PPI nonselectivity, that is, in both lesioned and nonlesioned rats. In summary, the present study indicates that PPI-enhancing effects induced by antipsychotics in DBA/2J mice and in NVH-lesioned rats are unlikely to be mediated by D(3) receptors.


Asunto(s)
Antagonistas de Dopamina/farmacología , Hipocampo/fisiología , Inhibición Neural/efectos de los fármacos , Receptores de Dopamina D3/antagonistas & inhibidores , Reflejo de Sobresalto/efectos de los fármacos , Análisis de Varianza , Animales , Animales Recién Nacidos , Conducta Animal/efectos de los fármacos , Agonistas de Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Hipocampo/efectos de los fármacos , Hipocampo/lesiones , Ácido Iboténico/toxicidad , Masculino , Ratones , Ratones Endogámicos DBA , Piperazinas/farmacología , Ratas
16.
Neuropharmacology ; 50(5): 521-31, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16324724

RESUMEN

The dopamine D4 receptor has been investigated for its potential role in several CNS disorders, notably schizophrenia and more recently, erectile dysfunction. Whereas studies have investigated dopamine D4 receptor-mediated signaling in vitro, there have been few, if any, attempts to identify dopamine D4 receptor signal transduction pathways in vivo. In the present studies, the selective dopamine D4 agonist PD168077 induces c-Fos expression and extracellular signal regulated kinase (ERK) phosphorylation in the hypothalamic paraventricular nucleus (PVN), a site known to regulate proerectile activity. The selective dopamine D4 receptor antagonist A-381393 blocked both c-Fos expression and ERK1/2 phosphorylation produced by PD168077. In addition, PD168077-induced ERK1/2 phosphorylation was prevented by SL327, an inhibitor of ERK1/2 phosphorylation. Interestingly, treatment with A-381393 alone significantly reduced the amount of Fos immunoreactivity as compared to basal expression observed in vehicle-treated controls. Dopamine D4 receptor and c-Fos coexpression in the PVN was observed using double immunohistochemical labeling, suggesting that PD168077-induced signaling may result from direct dopamine D4 receptor activation. Our results demonstrate functional dopamine D4 receptor expression and natural coupling in the PVN linked to signal transduction pathways that include immediate early gene and MAP kinase activation. Further, the ability of the selective dopamine D4 antagonist A-381393 alone to reduce c-Fos expression below control levels may imply the presence of a tonic dopamine D4 receptor activation under basal conditions in vivo. These findings provide additional evidence that the PVN may be a site of dopamine D4 receptor-mediated proerectile activity.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Genes fos/fisiología , Núcleo Hipotalámico Paraventricular/metabolismo , Receptores de Dopamina D4/fisiología , Transducción de Señal/fisiología , Aminoacetonitrilo/análogos & derivados , Aminoacetonitrilo/farmacología , Animales , Benzamidas/farmacología , Bencimidazoles/farmacología , Recuento de Células/métodos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Expresión Génica/efectos de los fármacos , Inmunohistoquímica/métodos , Masculino , Fosforilación/efectos de los fármacos , Piperazinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D4/agonistas , Receptores de Dopamina D4/antagonistas & inhibidores , Factores de Tiempo
17.
Psychopharmacology (Berl) ; 187(1): 47-55, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16767415

RESUMEN

RATIONALE: Nicotine improves the deficiencies of sensory gating function in schizophrenic patients and in dilute brown non-Agouti (DBA/2) mice. This effect of nicotine has been attributed to activation of the alpha7 nicotinic acetylcholine receptor (nAChR) subtype. OBJECTIVE: The aim of this study was to determine whether the activation of another nAChR subtype, the central nervous system (CNS) prominent alpha4beta2 receptor, also contributes to the effects of nicotine on sensory gating in DBA/2 mice. METHODS: Unanesthetized DBA/2 mice were treated either with nicotine, the alpha4beta2 antagonist dihydro-beta-erythroidine, the noncompetitive nAChR antagonist mecamylamine, or a combination of an antagonist and nicotine. Thereafter, gating was assessed by recording hippocampal evoked potentials (EP), which were elicited by pairs of auditory clicks. The EP response to the second click, or test amplitude (TAMP), was divided by the EP response to the first click, or condition amplitude (CAMP), to derive gating T:C ratios. RESULTS: Nicotine significantly (p<0.05) lowered T:C ratios by 42%, while significantly increasing CAMP by 55%. After a pretreatment with dihydro-beta-erythroidine, nicotine still significantly lowered T:C ratios by 28%; however, the nicotine-induced increase of CAMP was blocked. Mecamylamine blocked the effect of nicotine on both T:C ratios and CAMP. CONCLUSIONS: Activation of alpha4beta2 receptors by nicotine increases CAMP. However, under conditions where alpha4beta2 receptors are blocked, nicotine still lowers T:C ratios and may improve sensory gating, possibly through the activation of other nAChR subtypes such as alpha7. These effects of nicotine on auditory EPs may be indicative of a profile that would improve information processing in schizophrenia and other CNS diseases.


Asunto(s)
Hipocampo/efectos de los fármacos , Nicotina/farmacología , Receptores Nicotínicos/efectos de los fármacos , Animales , Dihidro-beta-Eritroidina/farmacología , Relación Dosis-Respuesta a Droga , Potenciales Evocados Auditivos/efectos de los fármacos , Hipocampo/fisiología , Mecamilamina/farmacología , Procesos Mentales/efectos de los fármacos , Ratones , Ratones Endogámicos DBA , Receptores Nicotínicos/fisiología , Esquizofrenia/tratamiento farmacológico
18.
Behav Brain Res ; 167(2): 355-64, 2006 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-16256210

RESUMEN

The pro-inflammatory cytokine interleukin-1 (IL-1) has been implicated in both inflammatory processes and nociceptive neurotransmission. To further investigate the role of IL-1 in different pain states, gene-disrupted mice lacking both IL-1alpha and IL-1beta genes (IL-1alphabeta (-/-)) were characterized in inflammatory, neuropathic, and post-operative pain models. IL-1alphabeta (-/-) mice showed normal sensorimotor function as measured by the rotorod assay compared to control mice (BALB/c). Acute and persistent formalin-induced nocifensive behaviors were reduced by 20% in IL-1alphabeta (-/-) mice as compared to control mice. IL-1alphabeta (-/-) mice also showed reduced inflammatory thermal and mechanical hyperalgesia compared to controls following the intraplantar administration of carrageenan or complete Freund's adjuvant (CFA). The duration of inflammatory hyperalgesia was shortened in IL-1alphabeta (-/-) mice versus controls in the CFA model. In contrast, deletion of IL-1alphabeta did not change the extent or the duration of post-operative pain developing after skin incision of the hind paw. Finally, time to onset, duration, and magnitude of mechanical allodynia were reduced in two models of neuropathic pain, spinal nerve L5-L6 ligation and chronic constriction injury of the sciatic nerve, in IL-1alphabeta (-/-) mice versus controls. These results demonstrate that IL-1alphabeta modulates both the generation and the maintenance of inflammatory and chronic neuropathic pain and that IL-1 may modulate nociceptive sensitivity to a greater extent in conditions of chronic as compared to acute pain.


Asunto(s)
Hiperalgesia/fisiopatología , Inflamación/fisiopatología , Interleucina-1/fisiología , Umbral del Dolor/fisiología , Dolor/fisiopatología , Neuropatía Ciática/fisiopatología , Enfermedad Aguda , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Hiperalgesia/genética , Inflamación/complicaciones , Interleucina-1/deficiencia , Interleucina-1/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Dolor/etiología , Dolor Postoperatorio/fisiopatología , Distribución Aleatoria , Prueba de Desempeño de Rotación con Aceleración Constante , Neuropatía Ciática/complicaciones
19.
Eur J Pharmacol ; 531(1-3): 108-17, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16438960

RESUMEN

Previous studies have demonstrated that Fos-like immunoreactivity is increased in spinal dorsal horn neurons in several pain models, and have suggested that Fos-like immunoreactivity could be used as a marker of neurons activated by painful stimulation. In the present study, we evaluated nociceptive behaviors and spinal Fos-like immunoreactivity in a rat skin incision model of post-operative pain. In this model, evoked and non-evoked pain behaviors were observed at least for 2 days after paw surgery, an increased number of Fos-like immunoreactive neurons was observed in the spinal dorsal horn at lumbar levels 4-5 two-hour post-surgery. The number of Fos-like immunoreactive neurons was significantly greater in animals with skin-muscle incision compared to animals with skin-alone incision. Interestingly, spinal Fos-like immunoreactivity was quickly normalized in rats with paw surgery at later time points (8 and 24 h post-surgery), whereas nociceptive behaviors were still observed. Furthermore, at 24 h post-surgery, spinal Fos-like immunoreactivity induced by thermal stimulation (42, 44, 46, 48, 52 degrees C for 15 s) was not significantly different between sham animals and animals with surgery. In both groups, an increase in spinal Fos-like immunoreactive neurons was observed with increasing temperatures, with similar laminar distribution. Finally, systemic morphine reduced post-operative pain and Fos-like immunoreactivity in a naloxone reversible manner, with greater potency and efficacy on behavioral endpoints than on Fos-like immunoreactivity. These results demonstrate a different profile of nociceptive behaviors and spinal Fos-like immunoreactivity in the rat skin incision model, suggesting a limited potential of spinal Fos-like immunoreactivity to study post-surgical pain and its pharmacology.


Asunto(s)
Dolor Postoperatorio/fisiopatología , Células del Asta Posterior/química , Proteínas Proto-Oncogénicas c-fos/análisis , Médula Espinal/química , Analgésicos Opioides/farmacología , Animales , Procedimientos Quirúrgicos Dermatologicos , Relación Dosis-Respuesta a Droga , Miembro Posterior/cirugía , Inmunohistoquímica , Masculino , Morfina/farmacología , Músculos/cirugía , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Dolor Postoperatorio/prevención & control , Células del Asta Posterior/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Temperatura , Factores de Tiempo
20.
Neurosci Lett ; 410(1): 15-9, 2006 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-17055644

RESUMEN

Selective and brain penetrating pharmacological antagonists for use in clarifying a role of alpha7 nicotinic acetylcholine receptors (nAChR) in behavioral paradigms are presently unavailable. Studies in alpha7 knock-out mice (KO) have not revealed convincing changes in behavioral phenotype, in particular measures of cognition that include contextual fear conditioning and spatial memory, which may be due to compensatory developmental changes. Therefore, an antisense oligonucleotide (aON) targeted toward the 3'- and 5'-UTR coding regions of the rat alpha7 nicotinic acetylcholine receptor was used. Following central injection of aON into the lateral ventricle of Long Evans rats for 6 days, treated rats exhibited a significant 42% and 25% decrease in alpha7 nAChR densities in hippocampus and cortex, respectively, as measured by [(3)H]-methyllycaconitine (MLA) binding. There was no change in alpha4beta2 densities measured by [(3)H]-cytisine binding. Acquisition of Morris Water Maze (MWM) performance, a measure of spatial memory, was impaired in aON-treated rats. In addition, a reduction in target platform crossings during a subsequent probe-trial was observed. These data demonstrate the ability of this aON to reduce hippocampal and cortical alpha7 nicotinic receptor densities associated with impaired MWM performance and support the specific involvement of the alpha7 nAChR in spatial learning and memory, a phenotype not affected in alpha7 KO mice.


Asunto(s)
Trastornos de la Memoria/inducido químicamente , Oligodesoxirribonucleótidos Antisentido/efectos adversos , Receptores Nicotínicos/fisiología , Percepción Espacial/efectos de los fármacos , Aconitina/análogos & derivados , Aconitina/farmacocinética , Alcaloides/farmacología , Animales , Azocinas/farmacología , Conducta Animal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Hipocampo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/fisiopatología , Antagonistas Nicotínicos/farmacocinética , Unión Proteica/efectos de los fármacos , Quinolizinas/farmacología , Ratas , Ratas Long-Evans , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/genética , Factores de Tiempo , Tritio/farmacocinética , Receptor Nicotínico de Acetilcolina alfa 7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA