Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
2.
Immunity ; 38(5): 855-69, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23706667

RESUMEN

Cells are equipped with mechanisms that allow them to rapidly detect and respond to viruses. These defense mechanisms rely partly on receptors that monitor the cytosol for the presence of atypical nucleic acids associated with virus infection. RIG-I-like receptors detect RNA molecules that are absent from the uninfected host. DNA receptors alert the cell to the abnormal presence of that nucleic acid in the cytosol. Signaling by RNA and DNA receptors results in the induction of restriction factors that prevent virus replication and establish cell-intrinsic antiviral immunity. In light of these formidable obstacles, viruses have evolved mechanisms of evasion, masking nucleic acid structures recognized by the host, sequestering themselves away from the cytosol or targeting host sensors, and signaling adaptors for deactivation or degradation. Here, we detail recent advances in the molecular understanding of cytosolic nucleic acid detection and its evasion by viruses.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ADN Viral/inmunología , ARN Viral/inmunología , Virosis/inmunología , Animales , Citosol/virología , Proteína 58 DEAD Box , Humanos , Inmunidad Innata , Interferones/inmunología , Receptores Inmunológicos , Transducción de Señal , Replicación Viral/genética , Virus/inmunología
4.
Nat Immunol ; 9(12): 1425-32, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18953338

RESUMEN

Drosophila, like other invertebrates and plants, relies mainly on RNA interference for its defense against viruses. In flies, viral infection also triggers the expression of many genes. One of the genes induced, Vago, encodes a 18-kilodalton cysteine-rich polypeptide. Here we provide genetic evidence that the Vago gene product controlled viral load in the fat body after infection with drosophila C virus. Induction of Vago was dependent on the helicase Dicer-2. Dicer-2 belongs to the same DExD/H-box helicase family as do the RIG-I-like receptors, which sense viral infection and mediate interferon induction in mammals. We propose that this family represents an evolutionary conserved set of sensors that detect viral nucleic acids and direct antiviral responses.


Asunto(s)
Proteínas de Drosophila/inmunología , Drosophila/inmunología , Drosophila/virología , ARN Helicasas/inmunología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Electroforesis en Gel de Poliacrilamida , Cuerpo Adiposo/inmunología , Cuerpo Adiposo/virología , Regulación de la Expresión Génica/inmunología , Humanos , Filogenia , ARN Helicasas/genética , ARN Helicasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasa III , Homología de Secuencia de Aminoácido , Transcripción Genética , Virosis/inmunología
5.
Nature ; 514(7522): 372-375, 2014 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-25119032

RESUMEN

Mammalian cells possess mechanisms to detect and defend themselves from invading viruses. In the cytosol, the RIG-I-like receptors (RLRs), RIG-I (retinoic acid-inducible gene I; encoded by DDX58) and MDA5 (melanoma differentiation-associated gene 5; encoded by IFIH1) sense atypical RNAs associated with virus infection. Detection triggers a signalling cascade via the adaptor MAVS that culminates in the production of type I interferons (IFN-α and ß; hereafter IFN), which are key antiviral cytokines. RIG-I and MDA5 are activated by distinct viral RNA structures and much evidence indicates that RIG-I responds to RNAs bearing a triphosphate (ppp) moiety in conjunction with a blunt-ended, base-paired region at the 5'-end (reviewed in refs 1, 2, 3). Here we show that RIG-I also mediates antiviral responses to RNAs bearing 5'-diphosphates (5'pp). Genomes from mammalian reoviruses with 5'pp termini, 5'pp-RNA isolated from yeast L-A virus, and base-paired 5'pp-RNAs made by in vitro transcription or chemical synthesis, all bind to RIG-I and serve as RIG-I agonists. Furthermore, a RIG-I-dependent response to 5'pp-RNA is essential for controlling reovirus infection in cultured cells and in mice. Thus, the minimal determinant for RIG-I recognition is a base-paired RNA with 5'pp. Such RNAs are found in some viruses but not in uninfected cells, indicating that recognition of 5'pp-RNA, like that of 5'ppp-RNA, acts as a powerful means of self/non-self discrimination by the innate immune system.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Difosfatos/metabolismo , Inmunidad Innata , ARN Viral/química , ARN Viral/metabolismo , Reoviridae/genética , Reoviridae/inmunología , Animales , Emparejamiento Base , Secuencia de Bases , Proteína 58 DEAD Box , Femenino , Genoma Viral/genética , Masculino , Ratones , ARN Viral/genética , Reoviridae/fisiología
6.
Eur J Immunol ; 45(12): 3386-403, 2015 12.
Artículo en Inglés | MEDLINE | ID: mdl-26457795

RESUMEN

IFN-α/ß allow cells to fight virus infection by inducing the expression of many genes that encode effectors of antiviral defense. One of these, the Ski2-like DExH-box helicase DDX60, was recently implicated in resistance of human cells to hepatitis C virus, as well as in induction of IFN-α/ß by retinoic acid inducible gene 1-like receptors (RLRs) that detect the presence of RNA viruses in a cell-intrinsic manner. Here, we sought to investigate the role of DDX60 in IFN-α/ß induction and in resistance to virus infection. Analysis of fibroblasts and myeloid cells from Ddx60-deficient mice revealed no impairment in IFN-α/ß production in response to RLR agonists, RNA viruses, or other stimuli. Moreover, overexpression of DDX60 did not potentiate IFN induction and DDX60 did not interact with RLRs or capture RLR agonists from virally infected cells. We also failed to identify any impairment in Ddx60-deficient murine cells or mice in resistance to infection with influenza A virus, encephalomyocarditis virus, Sindbis virus, vaccinia virus, or herpes simplex virus-1. These results put in question the reported role of DDX60 as a broad-acting positive regulator of RLR responses and hint at the possibility that it may function as a restriction factor highly specific for a particular virus or class of viruses.


Asunto(s)
ARN Helicasas DEAD-box/fisiología , Interferón Tipo I/biosíntesis , Virosis/inmunología , Animales , Línea Celular , Citocinas/biosíntesis , Humanos , Ratones , Receptores Toll-Like/fisiología
7.
PLoS Pathog ; 10(7): e1004276, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25033445

RESUMEN

Host protection from fungal infection is thought to ensue in part from the activity of Syk-coupled C-type lectin receptors and MyD88-coupled toll-like receptors in myeloid cells, including neutrophils, macrophages and dendritic cells (DCs). Given the multitude of cell types and receptors involved, elimination of a single pathway for fungal recognition in a cell type such as DCs, primarily known for their ability to prime T cell responses, would be expected to have little effect on innate resistance to fungal infection. Here we report that this is surprisingly not the case and that selective loss of Syk but not MyD88 in DCs abrogates innate resistance to acute systemic Candida albicans infection in mice. We show that Syk expression by DCs is necessary for IL-23p19 production in response to C. albicans, which is essential to transiently induce GM-CSF secretion by NK cells that are recruited to the site of fungal replication. NK cell-derived-GM-CSF in turn sustains the anti-microbial activity of neutrophils, the main fungicidal effectors. Thus, the activity of a single kinase in a single myeloid cell type orchestrates a complex series of molecular and cellular events that underlies innate resistance to fungal sepsis.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Células Dendríticas/inmunología , Inmunidad Innata , Péptidos y Proteínas de Señalización Intracelular/inmunología , Proteínas Tirosina Quinasas/inmunología , Animales , Candidiasis/genética , Células Dendríticas/patología , Subunidad p19 de la Interleucina-23/genética , Subunidad p19 de la Interleucina-23/inmunología , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Proteínas Tirosina Quinasas/genética , Quinasa Syk
8.
J Virol ; 87(24): 13409-21, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24089564

RESUMEN

Flock House virus (FHV) is a positive-sense RNA insect virus with a bipartite genome. RNA1 encodes the RNA-dependent RNA polymerase, and RNA2 encodes the capsid protein. A third protein, B2, is translated from a subgenomic RNA3 derived from the 3' end of RNA1. B2 is a double-stranded RNA (dsRNA) binding protein that inhibits RNA silencing, a major antiviral defense pathway in insects. FHV is conveniently propagated in Drosophila melanogaster cells but can also be grown in mammalian cells. It was previously reported that B2 is dispensable for FHV RNA replication in BHK21 cells; therefore, we chose this cell line to generate a viral mutant that lacked the ability to produce B2. Consistent with published results, we found that RNA replication was indeed vigorous but the yield of progeny virus was negligible. Closer inspection revealed that infected cells contained very small amounts of coat protein despite an abundance of RNA2. B2 mutants that had reduced affinity for dsRNA produced analogous results, suggesting that the dsRNA binding capacity of B2 somehow played a role in coat protein synthesis. Using fluorescence in situ hybridization of FHV RNAs, we discovered that RNA2 is recruited into large cytoplasmic granules in the absence of B2, whereas the distribution of RNA1 remains largely unaffected. We conclude that B2, by binding to double-stranded regions in progeny RNA2, prevents recruitment of RNA2 into cellular structures, where it is translationally silenced. This represents a novel function of B2 that further contributes to successful completion of the nodaviral life cycle.


Asunto(s)
Gránulos Citoplasmáticos/virología , Nodaviridae/metabolismo , Biosíntesis de Proteínas , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/virología , ARN Viral/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Virales/metabolismo , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , Cricetinae , Drosophila melanogaster , Nodaviridae/genética , Infecciones por Virus ARN/metabolismo , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Virales/genética
9.
Proc Natl Acad Sci U S A ; 107(45): 19390-5, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20978209

RESUMEN

Activation of innate antiviral responses in multicellular organisms relies on the recognition of structural differences between viral and cellular RNAs. Double-stranded (ds)RNA, produced during viral replication, is a well-known activator of antiviral defenses and triggers interferon production in vertebrates and RNAi in invertebrates and plants. Previous work in mammalian cells indicates that negative-strand RNA viruses do not appear to generate dsRNA, and that activation of innate immunity is triggered by the recognition of the uncapped 5' ends of viral RNA. This finding raises the question whether antiviral RNAi, which is triggered by the presence of dsRNA in insects, represents an effective host-defense mechanism against negative-strand RNA viruses. Here, we show that the negative-strand RNA virus vesicular stomatitis virus (VSV) does not produce easily detectable amounts of dsRNA in Drosophila cells. Nevertheless, RNAi represents a potent response to VSV infection, as illustrated by the high susceptibility of RNAi-defective mutant flies to this virus. VSV-derived small RNAs produced in infected cells or flies uniformly cover the viral genome, and equally map the genome and antigenome RNAs, indicating that they derive from dsRNA. Our findings reveal that RNAi is not restricted to the defense against positive-strand or dsRNA viruses but can also be highly efficient against a negative-strand RNA virus. This result is of particular interest in view of the frequent transmission of medically relevant negative-strand RNA viruses to humans by insect vectors.


Asunto(s)
Inmunidad Innata/genética , Interferencia de ARN/inmunología , Vesiculovirus/inmunología , Animales , Línea Celular , Drosophila/virología , Genoma Viral , Insectos Vectores , Virus ARN/inmunología , ARN Bicatenario/análisis , ARN Viral
10.
Elife ; 72018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30260317

RESUMEN

Damage-associated molecular patterns (DAMPs) are molecules exposed or released by dead cells that trigger or modulate immunity and tissue repair. In vertebrates, the cytoskeletal component F-actin is a DAMP specifically recognised by DNGR-1, an innate immune receptor. Previously we suggested that actin is also a DAMP in Drosophila melanogaster by inducing STAT-dependent genes (Srinivasan et al., 2016). Here, we revise that conclusion and report that α-actinin is far more potent than actin at inducing the same STAT response and can be found in trace amounts in actin preparations. Recombinant expression of actin or α-actinin in bacteria demonstrated that only α-actinin could drive the expression of STAT target genes in Drosophila. The response to injected α-actinin required the same signalling cascade that we had identified in our previous work using actin preparations. Taken together, these data indicate that α-actinin rather than actin drives STAT activation when injected into Drosophila.


Asunto(s)
Actinina/farmacología , Actinas/farmacología , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Factores de Transcripción STAT/metabolismo , Actinina/administración & dosificación , Actinina/genética , Actinas/administración & dosificación , Actinas/genética , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
11.
Elife ; 52016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27871362

RESUMEN

Damage-associated molecular patterns (DAMPs) are molecules released by dead cells that trigger sterile inflammation and, in vertebrates, adaptive immunity. Actin is a DAMP detected in mammals by the receptor, DNGR-1, expressed by dendritic cells (DCs). DNGR-1 is phosphorylated by Src-family kinases and recruits the tyrosine kinase Syk to promote DC cross-presentation of dead cell-associated antigens. Here we report that actin is also a DAMP in invertebrates that lack DCs and adaptive immunity. Administration of actin to Drosophila melanogaster triggers a response characterised by selective induction of STAT target genes in the fat body through the cytokine Upd3 and its JAK/STAT-coupled receptor, Domeless. Notably, this response requires signalling via Shark, the Drosophila orthologue of Syk, and Src42A, a Drosophila Src-family kinase, and is dependent on Nox activity. Thus, extracellular actin detection via a Src-family kinase-dependent cascade is an ancient means of detecting cell injury that precedes the evolution of adaptive immunity.


Asunto(s)
Actinas/metabolismo , Alarminas/metabolismo , Drosophila melanogaster/fisiología , Estrés Fisiológico , Animales , Transducción de Señal
12.
PLoS One ; 10(3): e0120205, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25793377

RESUMEN

Small RNAs are potent regulators of gene expression. They also act in defense pathways against invading nucleic acids such as transposable elements or viruses. To counteract these defenses, viruses have evolved viral suppressors of RNA silencing (VSRs). Plant viruses encoded VSRs interfere with siRNAs or miRNAs by targeting common mediators of these two pathways. In contrast, VSRs identified in insect viruses to date only interfere with the siRNA pathway whose effector Argonaute protein is Argonaute-2 (Ago-2). Although a majority of Drosophila miRNAs exerts their silencing activity through their loading into the Argonaute-1 protein, recent studies highlighted that a fraction of miRNAs can be loaded into Ago-2, thus acting as siRNAs. In light of these recent findings, we re-examined the role of insect VSRs on Ago-2-mediated miRNA silencing in Drosophila melanogaster. Using specific reporter systems in cultured Schneider-2 cells and transgenic flies, we showed here that the Cricket Paralysis virus VSR CrPV1-A but not the Flock House virus B2 VSR abolishes silencing by miRNAs loaded into the Ago-2 protein. Thus, our results provide the first evidence that insect VSR have the potential to directly interfere with the miRNA silencing pathway.


Asunto(s)
Proteínas Argonautas/metabolismo , Dicistroviridae/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/virología , Virus de Insectos/metabolismo , Interferencia de ARN , Proteínas Virales/metabolismo , Animales , Dicistroviridae/clasificación , MicroARNs/metabolismo
13.
Elife ; 3: e01535, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550253

RESUMEN

The RIG-I-like receptors RIG-I, LGP2, and MDA5 initiate an antiviral response that includes production of type I interferons (IFNs). The nature of the RNAs that trigger MDA5 activation in infected cells remains unclear. Here, we purify and characterise LGP2/RNA complexes from cells infected with encephalomyocarditis virus (EMCV), a picornavirus detected by MDA5 and LGP2 but not RIG-I. We show that those complexes contain RNA that is highly enriched for MDA5-stimulatory activity and for a specific sequence corresponding to the L region of the EMCV antisense RNA. Synthesis of this sequence by in vitro transcription is sufficient to generate an MDA5 stimulatory RNA. Conversely, genomic deletion of the L region in EMCV generates viruses that are less potent at stimulating MDA5-dependent IFN production. Thus, the L region antisense RNA of EMCV is a key determinant of innate immunity to the virus and represents an RNA that activates MDA5 in virally-infected cells. DOI: http://dx.doi.org/10.7554/eLife.01535.001.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Virus de la Encefalomiocarditis/metabolismo , ARN Helicasas/metabolismo , ARN sin Sentido/metabolismo , ARN Viral/metabolismo , Animales , Antivirales/farmacología , Chlorocebus aethiops , ARN Helicasas DEAD-box/genética , Virus de la Encefalomiocarditis/efectos de los fármacos , Virus de la Encefalomiocarditis/genética , Virus de la Encefalomiocarditis/inmunología , Regulación Viral de la Expresión Génica , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Helicasa Inducida por Interferón IFIH1 , Interferones/genética , Interferones/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , ARN Helicasas/genética , ARN sin Sentido/genética , ARN Viral/genética , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/genética , Transducción de Señal , Transfección , Células Vero , Replicación Viral
14.
J Clin Invest ; 122(5): 1615-27, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22505458

RESUMEN

DNGR-1 (CLEC9A) is a receptor for necrotic cells required by DCs to cross-prime CTLs against dead cell antigens in mice. It is currently unknown how DNGR-1 couples dead cell recognition to cross-priming. Here we found that DNGR-1 did not mediate DC activation by dead cells but rather diverted necrotic cell cargo into a recycling endosomal compartment, favoring cross-presentation to CD8(+) T cells. DNGR-1 regulated cross-priming in non-infectious settings such as immunization with antigen-bearing dead cells, as well as in highly immunogenic situations such as infection with herpes simplex virus type 1. Together, these results suggest that DNGR-1 is a dedicated receptor for cross-presentation of cell-associated antigens. Our work thus underscores the importance of cross-priming in immunity and indicates that antigenicity and adjuvanticity can be decoded by distinct innate immune receptors. The identification of specialized receptors that regulate antigenicity of virus-infected cells reveals determinants of antiviral immunity that might underlie the human response to infection and vaccination.


Asunto(s)
Antígenos de Superficie/inmunología , Reactividad Cruzada , Endocitosis , Herpes Simple/inmunología , Lectinas Tipo C/fisiología , Necrosis/metabolismo , Receptores Inmunológicos/fisiología , Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/patología , Animales , Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/fisiología , Fibroblastos/inmunología , Fibroblastos/metabolismo , Fibroblastos/patología , Herpes Simple/patología , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Células Mieloides/inmunología , Células Mieloides/fisiología , Necrosis/virología , Ovalbúmina/inmunología , Ovalbúmina/metabolismo , Transporte de Proteínas/inmunología , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Receptor Toll-Like 3/metabolismo
15.
PLoS One ; 4(6): e5866, 2009 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-19516905

RESUMEN

BACKGROUND: In plants and insects, RNA interference (RNAi) is the main responder against viruses and shapes the basis of antiviral immunity. Viruses counter this defense by expressing viral suppressors of RNAi (VSRs). While VSRs in Drosophila melanogaster were shown to inhibit RNAi through different modes of action, whether they act on other silencing pathways remained unexplored. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that expression of various plant and insect VSRs in transgenic flies does not perturb the Drosophila microRNA (miRNA) pathway; but in contrast, inhibits antiviral RNAi and the RNA silencing response triggered by inverted repeat transcripts, and injection of dsRNA or siRNA. Strikingly, these VSRs also suppressed transposon silencing by endogenous siRNAs (endo-siRNAs). CONCLUSIONS/SIGNIFICANCE: Our findings identify VSRs as tools to unravel small RNA pathways in insects and suggest a cosuppression of antiviral RNAi and endo-siRNA silencing by viruses during fly infections.


Asunto(s)
Drosophila melanogaster/virología , Interferencia de ARN , Animales , Animales Modificados Genéticamente , Antivirales/farmacología , Cruzamientos Genéticos , Silenciador del Gen , Heterocigoto , Células Fotorreceptoras de Invertebrados , ARN Bicatenario/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transgenes
16.
J Soc Biol ; 201(4): 359-65, 2007.
Artículo en Francés | MEDLINE | ID: mdl-18533096

RESUMEN

Viral diseases represent a constant threat and an important cause of mortality worldwide. We have developed a model to study the response to RNA virus infection in the fruit-fly drosophila. This insect is a good model to study the genetic bases of innate immunity, which constitutes the first level of host-defense in animals. We have shown that viral infection in drosophila triggers a response different from that to bacterial or fungal infections. Our data at this stage point to the existence of at least two types of antiviral defense mechanisms. On one hand, viral infection triggers a JAK-STAT dependent transcriptional response that leads to the expression of antiviral molecules that remain to be characterized. On the other hand, viral RNAs are recognized by Dicer-2 and degraded in siRNAs, thus inducing RNA interference and degradation of viral RNAs. Strikingly, the drosophila antiviral response evokes by some aspects the interferon response in mammals (JAK-STAT pathway) and antiviral defenses in plants (RNA interference).


Asunto(s)
Drosophila/inmunología , Inmunidad Innata , Virus de Insectos/inmunología , Animales , Virus ADN/inmunología , Drosophila/microbiología , Drosophila/virología , Proteínas de Drosophila/fisiología , Proteínas de Insectos/fisiología , Quinasas Janus/fisiología , ARN Helicasas/fisiología , Interferencia de ARN , Estabilidad del ARN , Virus ARN/inmunología , ARN Viral/metabolismo , Ribonucleasa III/fisiología , Factores de Transcripción STAT/fisiología , Especificidad de la Especie , Factores de Transcripción/fisiología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA