Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Anal Chem ; 94(38): 13163-13170, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36103608

RESUMEN

Hydride atomization and the fate of free analyte atoms in an externally heated quartz tube atomizer (QTA) were investigated employing selected ion flow tube mass spectrometry (SIFT-MS). SIFT-MS proved to be ideally suited to study water concentration in gases leaving the atomizer. This made it possible to quantify the oxygen "contaminant" flow rate to QTA as 0.04-0.05 mL min-1. This is valid for typical conditions of hydride generation. Most significantly, studies of temperature influence on water concentration resulted in detailed insight into hydrogen radical-forming reactions between oxygen and hydrogen. Minimum QTA temperatures required to generate hydrogen radicals under a variety of different flow rates and compositions of the QTA atmosphere were found to be in the range between 585 and 800 °C. The ability of SIFT-MS to detect extremely low concentrations of arsane and selane was employed to quantify the fraction of As and Se removed from the QTA in the form of hydride in dependence on QTA temperature under typical conditions of hydride generation. It was found that free As atoms formed by atomization of arsane decay to different species than to arsane. In the case of selane under typical atomization conditions, the efficiency of the decay of free Se atoms to selane was between 50 and 100% in dependence on actual flow rates and compositions of the QTA atmosphere.


Asunto(s)
Cuarzo , Agua , Hidrógeno , Espectrometría de Masas/métodos , Nebulizadores y Vaporizadores , Oxígeno , Compuestos de Selenio , Agua/análisis
2.
Anal Chem ; 88(7): 4041-7, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26938848

RESUMEN

An experimental setup consisting of a flow injection hydride generator coupled to an atomic fluorescence spectrometer was optimized in order to generate arsanes from tri- and pentavalent inorganic arsenic species (iAs(III), iAs(V)), monomethylarsonic acid (MAs(V)), and dimethylarsinic acid (DMAs(V)) with 100% efficiency with the use of only HCl and NaBH4 as the reagents. The optimal concentration of HCl was 2 mol L(-1); the optimal concentration of NaBH4 was 2.5% (m/v), and the volume of the reaction coil was 8.9 mL. To prevent excessive signal noise due to fluctuations of hydride supply to an atomizer, a new design of a gas-liquid separator was implemented. The optimized experimental setup was subsequently interfaced to HPLC and employed for speciation analysis of arsenic. Two chromatography columns were tested: (i) ion-pair chromatography and (ii) ion exchange chromatography. The latter offered much better results for human urine samples without a need for sample dilution. Due to the equal hydride generation efficiency (and thus the sensitivities) of all As species, a single species standardization by DMAs(V) standard was feasible. The limits of detection for iAs(III), iAs(V), MAs(V), and DMAs(V) were 40, 97, 57, and 55 pg mL(-1), respectively. Accuracy of the method was tested by the analysis of the standard reference material (human urine NIST 2669), and the method was also verified by the comparative analyses of human urine samples collected from five individuals with an independent reference method.


Asunto(s)
Arsénico/análisis , Arsénico/química , Espectrofotometría Atómica/métodos , Cromatografía Líquida de Alta Presión , Análisis de Inyección de Flujo , Humanos
3.
Anal Chem ; 88(11): 6064-70, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27159266

RESUMEN

Atomization of arsane in a 17 W planar quartz dielectric barrier discharge (DBD) atomizer was optimized, and its performance was compared to that of a multiple microflame quartz tube atomizer (MMQTA) for atomic absorption spectrometry (AAS). Argon, at a flow rate of 60 mL min(-1), was the best DBD discharge gas. Free As atoms were also observed in the DBD with nitrogen, hydrogen, and helium discharge gases but not in air. A dryer tube filled with NaOH beads placed downstream from the gas-liquid separator to prevent residual aerosol and moisture transport to the atomizer was found to improve the response by 25%. Analytical figures of merit were comparable, reaching an identical sensitivity of 0.48 s ng (-1) As in both atomizers and limits of detection (LOD) of 0.15 ng mL(-1) As in MMQTA and 0.16 ng mL(-1) As in DBD, respectively. Compared to MMQTA, DBD provided 1 order of magnitude better resistance to interference from other hydride-forming elements (Sb, Se, and Bi). Atomization efficiency in DBD was estimated to be 100% of that reached in the MMQTA. A simple procedure of lossless in situ preconcentration of arsane was developed. Addition of 7 mL min(-1) O2 to the Ar plasma discharge resulted in a quantitative retention of arsane in the optical arm of the DBD atomizer. Complete analyte release and atomization was reached as soon as oxygen was switched off. Preconcentration efficiency of 100% was observed, allowing a decrease of the LOD to 0.01 ng mL(-1) As employing a 300 s preconcentration period.

4.
Anal Chem ; 88(12): 6366-73, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27240643

RESUMEN

Demethylation during generation of volatile hydrides (HG), i.e. formation of noncorresponding arsanes from monomethylarsonic acid (MAs(V)), dimethylarsinic acid (DMAs(V)), and trimethylarsine oxide (TMAs(V)O) by the reaction of sodium tetrahydridoborate(1-) (THB) with different acids under analytical conditions, was investigated and characterized. Pronounced demethylation of MAs(V), DMAs(V), and TMAs(V)O was found during the reaction of THB with HCl, H2SO4, and HClO4, while HG from CH3COOH or TRIS buffer after prereduction with l-cysteine resulted in the formation of only the corresponding hydrides. In the case of HNO3 formation of corresponding hydrides was preserved for MAs(V) and DMAs(V) but not for TMAs(V)O. The extent of demethylation strongly depends on concentration of the acid and THB. It can be strongly suppressed in HCl medium by partial hydrolysis of THB with optimal concentration of acid before it reacts with MAs(V), DMAs(V), or TMAs(V)O. It appears that the demethylation is due to the action of specific hydrolytic products of THB (most probably by the first and second one).

5.
Anal Chem ; 88(3): 1804-11, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26796626

RESUMEN

Atomization of bismuthane in a planar dielectric barrier discharge (DBD) atomizer was investigated using a variety of probes, including atomic absorption spectrometry (AAS) to monitor distribution of free atoms along the optical path and direct analysis in real time (DART) coupled to an Orbitrap mass spectrometer to identify the structure of the species arising from the hydride generator as well as the atomizer. Results obtained with the DBD were compared to those from a conventional externally heated quartz tube atomizer (QTA). Free Bi atoms were essentially absent outside the central part of the DBD atomizer, suggesting their high reactivity. The gas phase analyte fraction transported beyond the confines of the DBD or QTA atomizers, quantified by inductively coupled plasma mass spectrometry (ICP-MS), was less than 10%. The amount of Bi found in acidic leachates of the interiors of both atomizers, representing the fraction retained on their surfaces, was ca. 90%. These complementary experiments comprising the determination of recovered Bi in the nitric acid leachates from deposition in the atomizer on the one hand and quantification of the Bi fraction transportable outside the atomizer on the other, were in excellent agreement, providing 100% mass balance of detected analyte. The high fraction of Bi deposited in the atomizers indicates significant reactivity of free Bi atoms, which is in accord with the fact that almost no free Bi atoms exist beyond the physical boundaries of the DBD. The extent of interference from other hydride forming elements (As, Sb, Se) on Bi response by AAS using DBD and QTA atomizers was investigated, with the former atomizer providing superior performance. Compared to QTA, DBD provided 2 orders of magnitude and 1 order of magnitude, respectively, better resistance to interference from Se and Sb.

6.
Anal Chem ; 86(19): 9620-5, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25248133

RESUMEN

Atomization of bismuth hydride in a 17 W planar quartz dielectric barrier discharge (DBD) atomizer was optimized and the performance of this device compared to that of a conventional quartz tube atomizer (QTA) for atomic absorption spectrometry (AAS). Modification of the inner surface of the DBD atomizer using dimethyldichlorsilane (DMDCS) was essential since it improved sensitivity by a factor of 2-4. Argon, at a flow rate of 125 mL min(-1), was the best DBD discharge gas. Free Bi atoms were also observed in the DBD with nitrogen, hydrogen, and helium discharge gases but not in air. The detection limit for Bi (1.1 ng mL(-1)) is worse than with the QTA (0.16 ng mL(-1) Bi). A poorer detection limit compared to a QTA is a consequence of the shorter optical path of the DBD. Moreover, the lower atomization efficiency and/or faster decay of free atoms in the DBD has to be considered. The performance of the DBD as an atomizer reflects both effects, i.e., atomization efficiency and free atom decay, was estimated to be 65% of that of the externally heated quartz tube atomizer. Nevertheless, this hydride generation DBD-AAS approach can be used for the routine determination of Bi, providing repeatability and accuracy comparable to that reached with a QTA, as demonstrated by analysis of NIST SRM 1643e (trace elements in water). The potential of in-atomizer preconcentration in a DBD atomizer is outlined.

7.
Anal Chem ; 86(20): 10422-8, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25300934

RESUMEN

This work describes the method of a selective hydride generation-cryotrapping (HG-CT) coupled to an extremely sensitive but simple in-house assembled and designed atomic fluorescence spectrometry (AFS) instrument for determination of toxicologically important As species. Here, an advanced flame-in-gas-shield atomizer (FIGS) was interfaced to HG-CT and its performance was compared to a standard miniature diffusion flame (MDF) atomizer. A significant improvement both in sensitivity and baseline noise was found that was reflected in improved (4 times) limits of detection (LODs). The yielded LODs with the FIGS atomizer were 0.44, 0.74, 0.15, 0.17 and 0.67 ng L(-1) for arsenite, total inorganic, mono-, dimethylated As and trimethylarsine oxide, respectively. Moreover, the sensitivities with FIGS and MDF were equal for all As species, allowing for the possibility of single species standardization with arsenate standard for accurate quantification of all other As species. The accuracy of HG-CT-AFS with FIGS was verified by speciation analysis in two samples of bottled drinking water and certified reference materials, NRC CASS-5 (nearshore seawater) and SLRS-5 (river water) that contain traces of methylated As species. As speciation was in agreement with results previously reported and sums of all quantified species corresponded with the certified total As. The feasibility of HG-CT-AFS with FIGS was also demonstrated by the speciation analysis in microsamples of exfoliated bladder epithelial cells isolated from human urine. The results for the sums of trivalent and pentavalent As species corresponded well with the reference results obtained by HG-CT-ICPMS (inductively coupled plasma mass spectrometry).


Asunto(s)
Arsénico/química , Técnicas de Química Analítica/instrumentación , Espectrometría de Fluorescencia/normas , Espectrofotometría Atómica/normas , Arsénico/análisis , Técnicas de Química Analítica/economía , Agua Potable/química , Límite de Detección , Nebulizadores y Vaporizadores
8.
Anal Biochem ; 450: 57-62, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24412166

RESUMEN

The aim of this study was to compare two methods for quantification of changes in intracellular potassium concentration (decrease from ∼140 to ∼20mM) due to the action of a pore-forming toxin, the adenylate cyclase toxin (CyaA) from the pathogenic bacterium Bordetella pertussis. CyaA was incubated with stably transfected K1 Chinese hamster ovary cells expressing the toxin receptor CD11b/CD18 and the decrease in potassium concentration in the cells was followed by inductively coupled plasma mass spectrometry (ICP-MS). It is shown that this method is superior in terms of sensitivity, accuracy, and temporal resolution over the method employing the potassium-binding benzofuran isophthalate-acetoxymethyl ester fluorescent indicator. The ICP-MS procedure was found to be a reliable and straightforward analytical approach enabling kinetic studies of CyaA action at physiologically relevant toxin concentrations (<1000ng/ml) in biological microsamples.


Asunto(s)
Toxina de Adenilato Ciclasa/toxicidad , Bordetella pertussis/enzimología , Espectrometría de Masas/métodos , Potasio/metabolismo , Animales , Antígeno CD11b/genética , Antígenos CD18/genética , Células CHO , Cricetinae , Cricetulus , Colorantes Fluorescentes/química , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Potasio/química , Transfección
9.
J Anal At Spectrom ; 28(9): 1456-1465, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24014931

RESUMEN

An ultra sensitive method for arsenic (As) speciation analysis based on selective hydride generation (HG) with preconcentration by cryotrapping (CT) and inductively coupled plasma- mass spectrometry (ICP-MS) detection is presented. Determination of valence of the As species is performed by selective HG without prereduction (trivalent species only) or with L-cysteine prereduction (sum of tri- and pentavalent species). Methylated species are resolved on the basis of thermal desorption of formed methyl substituted arsines after collection at -196°C. Limits of detection of 3.4, 0.04, 0.14 and 0.10 pg mL-1 (ppt) were achieved for inorganic As, mono-, di- and trimethylated species, respectively, from a 500 µL sample. Speciation analysis of river water (NRC SLRS-4 and SLRS-5) and sea water (NRC CASS-4, CASS-5 and NASS-5) reference materials certified to contain 0.4 to 1.3 ng mL-1 total As was performed. The concentrations of methylated As species in tens of pg mL-1 range obtained by HG-CT-ICP-MS systems in three laboratories were in excellent agreement and compared well with results of HG-CT-atomic absorption spectrometry and anion exchange liquid chromatography- ICP-MS; sums of detected species agreed well with the certified total As content. HG-CT-ICP-MS method was successfully used for analysis of microsamples of exfoliated bladder epithelial cells isolated from human urine. Here, samples of lysates of 25 to 550 thousand cells contained typically tens pg up to ng of iAs species and from single to hundreds pg of methylated species, well within detection power of the presented method. A significant portion of As in the cells was found in the form of the highly toxic trivalent species.

10.
Anal Chim Acta ; 1190: 339256, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34857132

RESUMEN

Atomization of hydrides and their methylated analogues in a dielectric barrier discharge (DBD) plasma atomizer was investigated. Selected ion flow tube mass spectrometry (SIFT-MS) was chosen as a detector being capable of selective detection of non-atomized original volatile species allowing thus direct quantification of atomization efficiency. Selenium hydride (SeH2) and three volatile arsenic species, namely arsenic hydride (AsH3), monomethylarsane (CH3AsH2) and dimethylarsane ((CH3)2AsH), were selected as model analytes. The mechanistic study performed contributes to understanding of the atomization processes in atomic absorption spectrometry (AAS). The presented results are compatible with a complete atomization of arsenic hydride as well as its methylated analogues and with atomization efficiency of SeH2 below 80%. Using AsH3 as a model analyte and a combination of AAS and SIFT-MS detectors has revealed that the hydride is not atomized, but decomposed in the DBD atomizer in absence of hydrogen fraction in the carrier gas. Apart from investigation of analyte atomization, the SIFT-MS detector is capable of quantitative determination of water vapor content being either transported to, or produced in the atomizer. This information is crucial especially in the case of the low-power/temperature DBD atomizer since its performance is sensitive to the amount of water vapor introduced into the plasma.


Asunto(s)
Arsénico , Hidrógeno , Espectrometría de Masas , Nebulizadores y Vaporizadores , Espectrofotometría Atómica
11.
Chem Res Toxicol ; 24(4): 478-80, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21361335

RESUMEN

Growing evidence suggest that the methylated trivalent metabolites of inorganic arsenic (iAs), methylarsonite (MAs(III)) and dimethylarsinite (DMAs(III)), contribute to adverse effects of iAs exposure. However, the lack of suitable methods has hindered the quantitative analysis of MAs(III) and DMAs(III) in complex biological matrices. Here, we show that hydride generation-cryotrapping-atomic absorption spectrometry can quantify both MAs(III) and DMAs(III) in livers of mice exposed to iAs. No sample extraction is required, thus limiting MAs(III) or DMAs(III) oxidation prior to analysis. The limits of detection are below 6 ng As/g of tissue, making this method suitable even for studies examining low exposures to iAs.


Asunto(s)
Arsénico/metabolismo , Ácido Cacodílico/análogos & derivados , Hígado/química , Espectrofotometría Atómica/métodos , Contaminantes Químicos del Agua/metabolismo , Animales , Arsénico/química , Arsénico/toxicidad , Ácido Cacodílico/análisis , Ácido Cacodílico/química , Hígado/metabolismo , Metilación , Ratones , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
12.
Chem Sci ; 10(12): 3643-3648, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30996959

RESUMEN

In an externally heated quartz atomizer, the most often used hydride atomizer for atomic absorption spectrometry, two-photon absorption laser-induced fluorescence (TALIF) was employed (i) to bring after four decades for the first time conclusive proof of the existence of H radical population sufficient to atomize hydrides thus confirming unambiguously the radical theory of hydride atomization and (ii) to determine the distribution of H radicals in the atomizer. Under typical operating conditions, H radicals are concentrated in an approximately 3 mm long cloud in the center of the optical arm and their peak concentration exceeds 1022 m-3, i.e. four orders of magnitude above the typical analytical concentration of hydride. The lowest detectable H radical concentration is in the order of 1019 m-3. The superb power of TALIF to determine the spatial distribution of H radicals in hydride atomizers for atomic absorption/fluorescence provides a route for elegant optimization of hydride atomization - just by establishing how the atomizer design and parameters influence the distribution of H radicals.

13.
Environ Health Perspect ; 116(12): 1656-60, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19079716

RESUMEN

BACKGROUND: The concentration of arsenic in urine has been used as a marker of exposure to inorganic As (iAs). Relative proportions of urinary metabolites of iAs have been identified as potential biomarkers of susceptibility to iAs toxicity. However, the adverse effects of iAs exposure are ultimately determined by the concentrations of iAs metabolites in target tissues. OBJECTIVE: In this study we examined the feasibility of analyzing As species in cells that originate in the urinary bladder, a target organ for As-induced cancer in humans. METHODS: Exfoliated bladder epithelial cells (BECs) were collected from urine of 21 residents of Zimapan, Mexico, who were exposed to iAs in drinking water. We determined concentrations of iAs, methyl-As (MAs), and dimethyl-As (DMAs) in urine using conventional hydride generation-cryotrapping-atomic absorption spectrometry (HG-CT-AAS). We used an optimized HG-CT-AAS technique with detection limits of 12-17 pg As for analysis of As species in BECs. RESULTS: All urine samples and 20 of 21 BEC samples contained detectable concentrations of iAs, MAs, and DMAs. Sums of concentrations of these As species in BECs ranged from 0.18 to 11.4 ng As/mg protein and in urine from 4.8 to 1,947 ng As/mL. We found no correlations between the concentrations or ratios of As species in BECs and in urine. CONCLUSION: These results suggest that urinary levels of iAs metabolites do not necessarily reflect levels of these metabolites in the bladder epithelium. Thus, analysis of As species in BECs may provide a more effective tool for risk assessment of bladder cancer and other urothelial diseases associated with exposures to iAs.


Asunto(s)
Arsénico/aislamiento & purificación , Células Epiteliales/química , Vejiga Urinaria/química , Contaminantes Químicos del Agua/aislamiento & purificación , Abastecimiento de Agua/análisis , Adolescente , Adulto , Arsénico/clasificación , Arsénico/toxicidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Espectrofotometría Atómica , Vejiga Urinaria/citología , Contaminantes Químicos del Agua/clasificación , Contaminantes Químicos del Agua/toxicidad
14.
Spectrochim Acta Part B At Spectrosc ; 63(3): 396-406, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18521190

RESUMEN

An automated system for hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer is described. Arsines are preconcentrated and separated in a Chromosorb filled U-tube. An automated cryotrapping unit, employing nitrogen gas formed upon heating in the detection phase for the displacement of the cooling liquid nitrogen, has been developed. The conditions for separation of arsines in a Chromosorb filled U-tube have been optimized. A complete separation of signals from arsine, methylarsine, dimethylarsine, and trimethylarsine has been achieved within a 60 s reading window. The limits of detection for methylated arsenicals tested were 4 ng l(-1). Selective hydride generation is applied for the oxidation state specific speciation analysis of inorganic and methylated arsenicals. The arsines are generated either exclusively from trivalent or from both tri- and pentavalent inorganic and methylated arsenicals depending on the presence of L-cysteine as a prereductant and/or reaction modifier. A TRIS buffer reaction medium is proposed to overcome narrow optimum concentration range observed for the L-cysteine modified reaction in HCl medium. The system provides uniform peak area sensitivity for all As species. Consequently, the calibration with a single form of As is possible. This method permits a high-throughput speciation analysis of metabolites of inorganic arsenic in relatively complex biological matrices such as cell culture systems without sample pretreatment, thus preserving the distribution of tri- and pentavalent species.

15.
Anal Chim Acta ; 1010: 11-19, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29447666

RESUMEN

Atomization conditions for antimony hydride in the plasma atomizer based on a dielectric barrier discharge (DBD) with atomic absorption spectrometric detection were optimized. Argon was found as the best discharge gas under a flow rate of 50 mL min- 1 while the DBD power was optimum at 30 W. Analytical figures of merit including interference study of As, Se and Bi have been subsequently investigated and the results compared to those found in an externally heated quartz tube atomizer (QTA). The limit of detection (LOD) reached in DBD (0.15 ng mL-1 Sb) is comparable to that observed in QTA (0.14 ng mL-1 Sb). Finally, possibility of Sb preconcentration by stibane in situ trapping in a DBD atomizer was studied. For trapping time of 300 s, the preconcentration efficiency and LOD, respectively, were 103 ±â€¯2% and 0.02 ng mL-1.

16.
Anal Chim Acta ; 1008: 8-17, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29420947

RESUMEN

Hydride generation (HG) from arsenosugars (dimethylarsinoylribosides) in batch and flow injection modes was studied. Its efficiency was found higher in H2SO4 medium than in HCl and higher in the batch mode than in the flow injection mode. To increase the efficiency in the flow injection mode a new generator with two inlets of NaBH4 solution was designed. This modified generator was interfaced between a HPLC column and an atomic fluorescence detector. The arsenosugars studied yielded HG efficiencies in the range 13-30% most probably due to a complicated mechanism of HG. While the mechanism included a formation of two structures of the analyte-borane-complexes, only one of them can lead to a formation of volatile arsanes (dimethylarsane, methylarsane, and arsane were identified).

17.
Anal Chim Acta ; 1005: 16-26, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29389315

RESUMEN

Comprehensive investigation of chemical generation of volatile species (VSG) of palladium for detection by analytical atomic and mass spectrometry and, specifically, the mechanistic aspects of their formation and tentative identification are presented. VSG was achieved in a flow injection mode using a generator that permitted rapid mixing of acidified sample with NaBH4 reductant. Atomization in a diffusion flame with detection by atomic absorption spectrometry was exclusively used for optimization of generation conditions while inductively coupled plasma mass spectrometry was utilized to investigate overall system efficiency and analytical metrics of the VSG system for potential ultratrace analysis. Sodium diethyldithiocarbamate (DDTC) served as a crucial reaction modifier, enhancing overall system efficiency 9-fold. Combinations of modifiers, Triton X-100 and Antifoam B surfactants provided a synergistic effect to yield a further 2-fold enhancement of VSG. The overall system efficiency was in the range 16-22%, with higher efficiencies correlating with higher Pd concentrations. The contribution of co-generated aerosol to the overall system efficiency, determined by means of concurrent measurement of added Cs, was negligible - less than 0.1%. The nature of the volatile species was investigated using several approaches, but principally by transmission electron microscopy (TEM) after their collection on a grid, and by direct analysis in real time (DART) using high resolution orbitrap mass spectrometry. These experiments suggest a parallel but dual-route mechanism of VSG of Pd, one attributed to generation of a volatile DDTC chelate of Pd and a second to nanoparticle formation.

18.
Anal Chim Acta ; 1028: 11-21, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-29884347

RESUMEN

Atomization of SeH2 in an externally heated multiple microflame quartz tube atomizer (MMQTA) as well as planar dielectric barrier discharge (DBD) atomizer was investigated using a variety of probes. Deposits of Se on inner surfaces of the atomizers were quantified and their distribution visualized by autoradiography with 75Se radiotracer. The gas phase fraction of Se transported beyond the confines of the atomizers was also determined. In the MMQTA, a 15% mass fraction of Se was deposited in a narrow zone at both colder ends of the optical arm (100-400 °C). By contrast, a 25-40% mass fraction of Se was deposited homogeneously along the entire length of the optical arm of the DBD, depending on detection technique employed. The fraction of Se transported outside the MMQTA approached 90%, whereas it was 50-70% in the DBD. The presence of H2 was essential for atomization of selenium hydride in both atomizers. The gaseous effluent arising from the hydride generator as well as the atomizers was investigated by direct analysis in real time (DART) coupled to an Orbitrap-mass spectrometer, enabling identification of major gas phase species of Se.

19.
Anal Chim Acta ; 977: 10-19, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28577593

RESUMEN

This work is a comprehensive study on chemical generation of volatile species (VSG) of copper for analytical atomic spectrometry. VSG was carried out in a flow injection mode in a special arrangement of the generator. Atomization in a diffusion flame atomizer (DF) with atomic absorption spectrometry detection was mostly used for VSG optimization. Inductively coupled plasma mass spectrometry (ICP-MS) was utilized to investigate generation efficiencies and feasibility of VSG system for ultratrace analysis. Concentration of individual reagents, namely of nitric acid, sodium tetrahydroborate and various reaction modifiers, was optimized with respect to generation efficiency. Triton X-100 and Antifoam B were chosen as the best combination of the modifiers owing to sixfold increase in sensitivity, decrease of tailing of measured signals and long-term repeatability. The addition of 500 µg L-1 of Ag was found crucial to maintain identical generation efficiency at low concentrations of Cu. This phenomenon was ascribed to the change in the size of generated species. The release and generation efficiency were accurately determined as 56-58 and 31-32%, respectively. The contribution of co-generated aerosol to release and generation efficiency measured by means of Cs and Ba was found negligible, only 0.40 and 0.13%, respectively, which underlines highly efficient VSG of Cu. The nature of volatile species was investigated by various approaches. The results cannot provide the decisive evidence. However, experiments with the DF, ICP-MS and transmission electron microscopy (TEM) indicate that the generated species are not volatile in the true sense but that they are strongly associated with fine aerosol co-generated during VSG. Cu clusters or nanoparticles of very small size (< 10 nm) are presumed but the formation of metastable copper hydride cannot be conclusively excluded.

20.
Talanta ; 175: 406-412, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28842009

RESUMEN

A slurry sampling procedure for arsenic speciation analysis in baby food by arsane generation, cryogenic trapping and detection with atomic absorption spectrometry is presented. Several procedures were tested for slurry preparation, including different reagents (HNO3, HCl and tetramethylammonium hydroxide - TMAH) and their concentrations, water bath heating and ultrasound-assisted agitation. The best results for inorganic arsenic (iAs) and dimethylarsinate (DMA) were reached when using 3molL-1 HCl under heating and ultrasound-assisted agitation. The developed method was applied for the analysis of five porridge powder and six baby meal samples. The trueness of the method was checked with a certified reference material (CRM) of total arsenic (tAs), iAs and DMA in rice (ERM-BC211). Arsenic recoveries (mass balance) for all samples and CRM were performed by the determination of the tAs by inductively coupled plasma mass spectrometry (ICP-MS) after microwave-assisted digestion and its comparison against the sum of the results from the speciation analysis. The relative limits of detection were 0.44, 0.24 and 0.16µgkg-1 for iAs, methylarsonate and DMA, respectively. The concentrations of the most toxic arsenic species (iAs) in the analyzed baby food samples ranged between 4.2 and 99µgkg-1 which were below the limits of 300, 200 and 100µgkg-1 set by the Brazilian, Chinese and European legislation, respectively.


Asunto(s)
Arsénico/análisis , Arsenicales/análisis , Ácido Cacodílico/análisis , Análisis de los Alimentos/métodos , Alimentos Infantiles/análisis , Espectrofotometría Atómica/métodos , Diseño de Equipo , Análisis de los Alimentos/instrumentación , Contaminación de Alimentos/análisis , Humanos , Lactante , Recién Nacido , Microondas , Oryza/química , Sonicación/instrumentación , Sonicación/métodos , Espectrofotometría Atómica/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA