Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
EMBO J ; 42(6): e112558, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36762431

RESUMEN

Moraxella catarrhalis is an important human respiratory pathogen and a major causative agent of otitis media and chronic obstructive pulmonary disease. Toll-like receptors contribute to, but cannot fully account for, the complexity of the immune response seen in M. catarrhalis infection. Using primary mouse bone marrow-derived macrophages to examine the host response to M. catarrhalis infection, our global transcriptomic and targeted cytokine analyses revealed activation of immune signalling pathways by both membrane-bound and cytosolic pattern-recognition receptors. We show that M. catarrhalis and its outer membrane vesicles or lipooligosaccharide (LOS) can activate the cytosolic innate immune sensor caspase-4/11, gasdermin-D-dependent pyroptosis, and the NLRP3 inflammasome in human and mouse macrophages. This pathway is initiated by type I interferon signalling and guanylate-binding proteins (GBPs). We also show that inflammasomes and GBPs, particularly GBP2, are required for the host defence against M. catarrhalis in mice. Overall, our results reveal an essential role for the interferon-inflammasome axis in cytosolic recognition and immunity against M. catarrhalis, providing new molecular targets that may be used to mitigate pathological inflammation triggered by this pathogen.


Asunto(s)
Caspasas , Inflamasomas , Ratones , Humanos , Animales , Caspasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Moraxella catarrhalis/metabolismo , Proteínas Portadoras , Inmunidad Innata
2.
Nat Immunol ; 16(5): 476-484, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25774716

RESUMEN

The AIM2 inflammasome detects double-stranded DNA in the cytosol and induces caspase-1-dependent pyroptosis as well as release of the inflammatory cytokines interleukin 1ß (IL-1ß) and IL-18. AIM2 is critical for host defense against DNA viruses and bacteria that replicate in the cytosol, such as Francisella tularensis subspecies novicida (F. novicida). The activation of AIM2 by F. novicida requires bacteriolysis, yet whether this process is accidental or is a host-driven immunological mechanism has remained unclear. By screening nearly 500 interferon-stimulated genes (ISGs) through the use of small interfering RNA (siRNA), we identified guanylate-binding proteins GBP2 and GBP5 as key activators of AIM2 during infection with F. novicida. We confirmed their prominent role in vitro and in a mouse model of tularemia. Mechanistically, these two GBPs targeted cytosolic F. novicida and promoted bacteriolysis. Thus, in addition to their role in host defense against vacuolar pathogens, GBPs also facilitate the presentation of ligands by directly attacking cytosolic bacteria.


Asunto(s)
Bacteriólisis , Proteínas de Unión al ADN/metabolismo , Francisella tularensis/fisiología , Proteínas de Unión al GTP/metabolismo , Inflamasomas/metabolismo , Tularemia/inmunología , Animales , Células Cultivadas , Citosol/microbiología , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Proteínas de Unión al GTP/genética , Humanos , Ratones , Ratones Noqueados , ARN Interferente Pequeño/genética
3.
EMBO J ; 37(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29459437

RESUMEN

Pathogenic and commensal Gram-negative bacteria produce and release outer membrane vesicles (OMVs), which present several surface antigens and play an important role for bacterial pathogenesis. OMVs also modulate the host immune system, which makes them attractive as vaccine candidates. At the cellular level, OMVs are internalized by macrophages and deliver lipopolysaccharide (LPS) into the host cytosol, thus activating the caspase-11 non-canonical inflammasome. Here, we show that OMV-induced inflammasome activation requires TLR4-TRIF signaling, the production of type I interferons, and the action of guanylate-binding proteins (GBPs), both in macrophages and in vivo Mechanistically, we find that isoprenylated GBPs associate with the surface of OMVs or with transfected LPS, indicating that the key factor that determines GBP recruitment to the Gram-negative bacterial outer membranes is LPS itself. Our findings provide new insights into the mechanism by which GBPs target foreign surfaces and reveal a novel function for GBPs in controlling the intracellular detection of LPS derived from extracellular bacteria in the form of OMVs, thus extending their function as a hub between cell-autonomous immunity and innate immunity.


Asunto(s)
Bacterias/inmunología , Membrana Celular/inmunología , Proteínas de Unión al GTP/inmunología , Inflamasomas/inmunología , Lipopolisacáridos/inmunología , Animales , Proteínas de Unión al GTP/genética , Ratones Endogámicos C57BL , Ratones Noqueados
4.
Infect Immun ; 89(6)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33753412

RESUMEN

The lymphotoxin ß receptor (LTßR) plays an essential role in the initiation of immune responses to intracellular pathogens. In mice, the LTßR is crucial for surviving acute toxoplasmosis; however, until now, a functional analysis was largely incomplete. Here, we demonstrate that the LTßR is a key regulator required for the intricate balance of adaptive immune responses. Toxoplasma gondii-infected LTßR-deficient (LTßR-/-) mice show globally altered interferon-γ (IFN-γ) regulation, reduced IFN-γ-controlled host effector molecule expression, impaired T cell functionality, and an absent anti-parasite-specific IgG response, resulting in a severe loss of immune control of the parasites. Reconstitution of LTßR-/- mice with toxoplasma immune serum significantly prolongs survival following T. gondii infection. Notably, analysis of RNA-seq data clearly indicates a specific effect of T. gondii infection on the B cell response and isotype switching. This study uncovers the decisive role of the LTßR in cytokine regulation and adaptive immune responses to control T. gondii.


Asunto(s)
Inmunidad Adaptativa , Interacciones Huésped-Parásitos/inmunología , Inmunidad Innata , Receptor beta de Linfotoxina/metabolismo , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Toxoplasmosis/metabolismo , Animales , Modelos Animales de Enfermedad , Receptor beta de Linfotoxina/genética , Ratones , Ratones Noqueados , Toxoplasmosis/parasitología
5.
Biochem J ; 476(21): 3161-3182, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31689351

RESUMEN

Guanylate-binding proteins (GBPs) constitute a family of interferon-inducible guanosine triphosphatases (GTPases) that are key players in host defense against intracellular pathogens ranging from protozoa to bacteria and viruses. So far, human GBP1 and GBP5 as well as murine GBP2 (mGBP2) have been biochemically characterized in detail. Here, with murine GBP7 (mGBP7), a GBP family member with an unconventional and elongated C-terminus is analyzed. The present study demonstrates that mGBP7 exhibits a concentration-dependent GTPase activity and an apparent GTP turnover number of 20 min-1. In addition, fluorescence spectroscopy analyses reveal that mGBP7 binds GTP with high affinity (KD = 0.22 µM) and GTPase activity assays indicate that mGBP7 hydrolyzes GTP to GDP and GMP. The mGBP7 GTPase activity is inhibited by incubation with γ-phosphate analogs and a K51A mutation interfering with GTP binding. SEC-MALS analyses give evidence that mGBP7 forms transient dimers and that this oligomerization pattern is not influenced by the presence of nucleotides. Moreover, a structural model for mGBP7 is provided by homology modeling, which shows that the GTPase possesses an elongated C-terminal (CT) tail compared with the CaaX motif-containing mGBP2 and human GBP1. Molecular dynamics simulations indicate that this tail has transmembrane characteristics and, interestingly, confocal microscopy analyses reveal that the CT tail is required for recruitment of mGBP7 to the parasitophorous vacuole of Toxoplasma gondii.


Asunto(s)
Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas de Unión al GTP/genética , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Cinética , Ratones , Simulación de Dinámica Molecular , Dominios Proteicos , Toxoplasma/fisiología , Toxoplasmosis/enzimología , Toxoplasmosis/genética , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología
6.
Int J Mol Sci ; 20(5)2019 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-30832397

RESUMEN

Transcription of the HIV-1 provirus generates a viral pre-mRNA, which is alternatively spliced into more than 50 HIV-1 mRNAs encoding all viral proteins. Regulation of viral alternative splice site usage includes the presence of splicing regulatory elements (SREs) which can dramatically impact RNA expression and HIV-1 replication when mutated. Recently, we were able to show that two viral SREs, GI3-2 and ESEtat, are important players in the generation of viral vif, vpr and tat mRNAs. Furthermore, we demonstrated that masking these SREs by transfected locked nucleic acid (LNA) mixmers affect the viral splicing pattern and viral particle production. With regard to the development of future therapeutic LNA mixmer-based antiretroviral approaches, we delivered the GI3-2 and the ESEtat LNA mixmers "nakedly", without the use of transfection reagents (gymnosis) into HIV-1 infected cells. Surprisingly, we observed that gymnotically-delivered LNA mixmers accumulated in the cytoplasm, and seemed to co-localize with GW bodies and induced degradation of mRNAs containing their LNA target sequence. The GI3-2 and the ESEtat LNA-mediated RNA degradation resulted in abrogation of viral replication in HIV-1 infected Jurkat and PM1 cells as well as in PBMCs.


Asunto(s)
VIH-1/genética , Oligonucleótidos/farmacología , Empalme del ARN , Estabilidad del ARN , VIH-1/efectos de los fármacos , Células HeLa , Humanos , Células Jurkat , ARN Mensajero/genética , ARN Mensajero/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo
7.
Proc Natl Acad Sci U S A ; 111(16): 6046-51, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24715728

RESUMEN

IFN receptor signaling induces cell-autonomous immunity to infections with intracellular bacterial pathogens. Here, we demonstrate that IFN-inducible guanylate binding protein (Gbp) proteins stimulate caspase-11-dependent, cell-autonomous immunity in response to cytoplasmic LPS. Caspase-11-dependent pyroptosis is triggered in IFN-activated macrophages infected with the Gram-negative bacterial pathogen Legionella pneumophila. The rapid induction of pyroptosis in IFN-activated macrophages required a cluster of IFN-inducible Gbp proteins encoded on mouse chromosome 3 (Gbp(chr3)). Induction of pyroptosis in naive macrophages by infections with the cytosol-invading ΔsdhA L. pneumophila mutant was similarly dependent on Gbp(chr3), suggesting that these Gbp proteins play a role in the detection of bacteria accessing the cytosol. Cytoplasmic LPS derived from Salmonella ssp. or Escherichia coli has recently been shown to trigger caspase-11 activation and pyroptosis, but the cytoplasmic sensor for LPS and components of the caspase-11 inflammasome are not yet defined. We found that the induction of caspase-11-dependent pyroptosis by cytoplasmic L. pneumophila-derived LPS required Gbp(chr3) proteins. Similarly, pyroptosis induced by cytoplasmic LPS isolated from Salmonella was diminished in Gbp(chr3)-deficient macrophages. These data suggest a role for Gbp(chr3) proteins in the detection of cytoplasmic LPS and the activation of the noncanonical inflammasome.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al GTP/metabolismo , Lipopolisacáridos/farmacología , Animales , Caspasas Iniciadoras , Citoplasma/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Interferón gamma/farmacología , Legionella pneumophila/efectos de los fármacos , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/fisiología , Enfermedad de los Legionarios/microbiología , Enfermedad de los Legionarios/patología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación/genética , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/fisiología
8.
J Hepatol ; 64(5): 1108-1117, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26708145

RESUMEN

BACKGROUND & AIMS: The liver exhibits a unique capacity for regeneration in response to injury. Lymphotoxin-ß receptor (LTßR), a core member of the tumor necrosis factor (TNF)/tumor necrosis factor receptor (TNFR) superfamily is known to play an important role in this process. However, the function of LTßR during pathophysiological alterations and its molecular mechanisms during liver regeneration are so far ill-characterized. METHODS: LTßR(-/-) mice were subjected to 70% hepatectomy and liver regeneration capacity, bile acid profiles, and transcriptome analysis were performed. RESULTS: LTßR(-/-) deficient mice suffered from increased and prolonged liver tissue damage after 70% hepatectomy, accompanied by deregulated bile acid homeostasis. Pronounced differences in the expression patterns of genes relevant for bile acid synthesis and recirculation were observed. LTßR and TNFRp55 share downstream signalling elements. Therefore, LTßR(-/-) mice were treated with etanercept to create mice functionally deficient in both signalling pathways. Strikingly, the combined blockade of TNFRp55 and LTßR signalling leads to complete failure of liver regeneration resulting in death within 24 to 48h after PHx. Transcriptome analysis revealed a marked disparity in gene expression programs in livers of LTßR(-/-) and etanercept-treated LTßR(-/-) vs. wild-type animals after PHx. Murinoglobulin 2 was identified as a significantly differentially regulated gene. CONCLUSIONS: LTßR is essential for efficient liver regeneration and cooperates with TNFRp55 in this process. Differences in survival kinetics strongly suggest distinct functions for these two cytokine receptors in liver regeneration. Failure of TNFR and LTßR signalling renders liver regeneration impossible.


Asunto(s)
ADN/genética , Regulación de la Expresión Génica , Hepatopatías/genética , Regeneración Hepática/genética , Receptor beta de Linfotoxina/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Señuelo del Factor de Necrosis Tumoral/genética , Animales , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Hepatopatías/metabolismo , Hepatopatías/patología , Receptor beta de Linfotoxina/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Tipo I de Factores de Necrosis Tumoral/biosíntesis , Receptores Señuelo del Factor de Necrosis Tumoral/biosíntesis
9.
Proc Natl Acad Sci U S A ; 110(1): 294-9, 2013 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-23248289

RESUMEN

IFN-γ orchestrates the host response against intracellular pathogens. Members of the guanylate binding proteins (GBP) comprise the most abundant IFN-γ-induced transcriptional response. mGBPs are GTPases that are specifically up-regulated by IFN-γ, other proinflammatory cytokines, toll-like receptor agonists, as well as in response to Listeria monocytogenes and Toxoplasma gondii infection. mGBP2 localizes at the parasitophorous vacuole (PV) of T. gondii; however, the molecular function of mGBP2 and its domains in T. gondii infection is not known. Here, we show that mGBP2 is highly expressed in several cell types, including T and B cells after stimulation. We provide evidence that the C-terminal domain is sufficient and essential for recruitment to the T. gondii PV. Functionally, mGBP2 reduces T. gondii proliferation because mGBP2-deficient cells display defects in the replication control of T. gondii. Ultimately, mGBP2-deficient mice reveal a marked immune susceptibility to T. gondii. Taken together, mGBP2 is an essential immune effector molecule mediating antiparasitic resistance.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Linfocitos/metabolismo , Toxoplasma/fisiología , Toxoplasmosis Animal/inmunología , Animales , Astrocitos , Western Blotting , Técnica del Anticuerpo Fluorescente , Proteínas de Unión al GTP/genética , Interacciones Huésped-Patógeno , Interferón gamma/inmunología , Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Células 3T3 NIH , Reproducción/fisiología
10.
Retrovirology ; 12: 29, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25889056

RESUMEN

BACKGROUND: The viral regulatory protein Tat is essential for establishing a productive transcription from the 5'-LTR promoter during the early phase of viral gene expression. Formation of the Tat-encoding mRNAs requires splicing at the viral 3'ss A3, which has previously been shown to be both negatively and positively regulated by the downstream splicing regulatory elements (SREs) ESS2p and ESE2/ESS2. However, using the novel RESCUE-type computational HEXplorer algorithm, we were recently able to identify another splicing enhancer (ESE(5807-5838), henceforth referred to as ESE tat ) located between ESS2p and ESE2/ESS2. Here we show that ESE tat has a great impact on viral tat-mRNA splicing and that it is fundamental for regulated 3'ss A3 usage. RESULTS: Mutational inactivation or locked nucleic acid (LNA)-directed masking of the ESE tat sequence in the context of a replication-competent virus was associated with a failure (i) to activate viral 3'ss A3 and (ii) to accumulate Tat-encoding mRNA species. Consequently, due to insufficient amounts of Tat protein efficient viral replication was drastically impaired. RNA in vitro binding assays revealed SRSF2 and SRSF6 as candidate splicing factors acting through ESE tat and ESE2 for 3'ss A3 activation. This notion was supported by coexpression experiments, in which wild-type, but not ESE tat -negative provirus responded to higher levels of SRSF2 and SRSF6 proteins with higher levels of tat-mRNA splicing. Remarkably, we could also find that SRSF6 overexpression established an antiviral state within provirus-transfected cells, efficiently blocking virus particle production. For the anti-HIV-1 activity the arginine-serine (RS)-rich domain of the splicing factor was dispensable. CONCLUSIONS: Based on our results, we propose that splicing at 3'ss A3 is dependent on binding of the enhancing SR proteins SRSF2 and SRSF6 to the ESE tat and ESE2 sequence. Mutational inactivation or interference specifically with ESE tat activity by LNA-directed masking seem to account for an early stage defect in viral gene expression, probably by cutting off the supply line of Tat that HIV needs to efficiently transcribe its genome.


Asunto(s)
VIH-1/fisiología , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Secuencias Reguladoras de Ácido Ribonucleico , Ribonucleoproteínas/metabolismo , Replicación Viral , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/biosíntesis , Línea Celular , Análisis Mutacional de ADN , Expresión Génica , VIH-1/genética , Humanos , Unión Proteica , Factores de Empalme Serina-Arginina , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
11.
Eur J Immunol ; 44(2): 500-10, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24136200

RESUMEN

The DC-derived chemokine CCL17, a ligand of CCR4, has been shown to promote various inflammatory diseases such as atopic dermatitis, atherosclerosis, and inflammatory bowel disease. Under steady-state conditions, and even after systemic stimulation with LPS, CCL17 is not expressed in resident splenic DCs as opposed to CD8α⁻CD11b⁺ LN DCs, which produce large amounts of CCL17 in particular after maturation. Upon systemic NKT cell activation through α-galactosylceramide stimulation however, CCL17 can be upregulated in both CD8α⁻ and CD8α⁺ splenic DC subsets and enhances cross-presentation of exogenous antigens. Based on genome-wide expression profiling, we now show that splenic CD11b⁺ DCs are susceptible to IFN-γ-mediated suppression of CCL17, whereas LN CD11b⁺CCL17⁺ DCs downregulate the IFN-γR and are much less responsive to IFN-γ. Under inflammatory conditions, particularly in the absence of IFN-γ signaling in IFN-γRKO mice, CCL17 expression is strongly induced in a major proportion of splenic DCs by the action of GM-CSF in concert with IL-4. Our findings demonstrate that the local cytokine milieu and differential cytokine responsiveness of DC subsets regulate lymphoid organ specific immune responses at the level of chemokine expression.


Asunto(s)
Diferenciación Celular/inmunología , Microambiente Celular/inmunología , Células Dendríticas/metabolismo , Interferón gamma/metabolismo , Interleucina-4/metabolismo , Receptores de Interferón/metabolismo , Bazo/metabolismo , Animales , Antígeno CD11b/inmunología , Antígeno CD11b/metabolismo , Quimiocina CCL17/inmunología , Quimiocina CCL17/metabolismo , Células Dendríticas/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interferón gamma/inmunología , Interleucina-4/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores de Interferón/deficiencia , Receptores de Interferón/inmunología , Bazo/inmunología , Receptor de Interferón gamma
12.
PLoS Pathog ; 9(4): e1003320, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23633952

RESUMEN

IFN-γ activates cells to restrict intracellular pathogens by upregulating cellular effectors including the p65 family of guanylate-binding proteins (GBPs). Here we test the role of Gbp1 in the IFN-γ-dependent control of T. gondii in the mouse model. Virulent strains of T. gondii avoided recruitment of Gbp1 to the parasitophorous vacuole in a strain-dependent manner that was mediated by the parasite virulence factors ROP18, an active serine/threonine kinase, and the pseudokinase ROP5. Increased recruitment of Gbp1 to Δrop18 or Δrop5 parasites was associated with clearance in IFN-γ-activated macrophages in vitro, a process dependent on the autophagy protein Atg5. The increased susceptibility of Δrop18 mutants in IFN-γ-activated macrophages was reverted in Gbp1(-/-) cells, and decreased virulence of this mutant was compensated in Gbp1(-/-) mice, which were also more susceptible to challenge with type II strain parasites of intermediate virulence. These findings demonstrate that Gbp1 plays an important role in the IFN-γ-dependent, cell-autonomous control of toxoplasmosis and predict a broader role for this protein in host defense.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Interferón gamma/metabolismo , Macrófagos/inmunología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Animales , Proteína 5 Relacionada con la Autofagia , Células de la Médula Ósea/citología , Células Cultivadas , Proteínas de Unión al GTP/genética , Inmunidad Celular , Activación de Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Protozoarias , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología
13.
J Biol Chem ; 287(33): 27452-66, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22730319

RESUMEN

One of the most abundantly IFN-γ-induced protein families in different cell types is the 65-kDa guanylate-binding protein family that is recruited to the parasitophorous vacuole of the intracellular parasite Toxoplasma gondii. Here, we elucidate the relationship between biochemistry and cellular host defense functions of mGBP2 in response to Toxoplasma gondii. The wild type protein exhibits low affinities to guanine nucleotides, self-assembles upon GTP binding, forming tetramers in the activated state, and stimulates the GTPase activity in a cooperative manner. The products of the two consecutive hydrolysis reactions are both GDP and GMP. The biochemical characterization of point mutants in the GTP-binding motifs of mGBP2 revealed amino acid residues that decrease the GTPase activity by orders of magnitude and strongly impair nucleotide binding and multimerization ability. Live cell imaging employing multiparameter fluorescence image spectroscopy (MFIS) using a Homo-FRET assay shows that the inducible multimerization of mGBP2 is dependent on a functional GTPase domain. The consistent results indicate that GTP binding, self-assembly, and stimulated hydrolysis activity are required for physiological localization of the protein in infected and uninfected cells. Ultimately, we show that the GTPase domain regulates efficient recruitment to T. gondii in response to IFN-γ.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Multimerización de Proteína , Toxoplasma , Toxoplasmosis/enzimología , Vacuolas/enzimología , Animales , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/inmunología , Guanosina Difosfato/genética , Guanosina Difosfato/inmunología , Guanosina Difosfato/metabolismo , Guanosina Monofosfato/genética , Guanosina Monofosfato/inmunología , Guanosina Monofosfato/metabolismo , Inmunidad Innata , Interferón gamma/genética , Interferón gamma/inmunología , Interferón gamma/metabolismo , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , Estructura Terciaria de Proteína , Toxoplasmosis/genética , Toxoplasmosis/inmunología , Vacuolas/genética , Vacuolas/inmunología , Vacuolas/parasitología
14.
ScientificWorldJournal ; 2013: 480231, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24324375

RESUMEN

Toxoplasma gondii is an obligate intracellular protozoan parasite responsible for a common infection of the central nervous system. Interferon (IFN) γ is the key cytokine of host defence against T. gondii. However, T. gondii strains differ in virulence and T. gondii factors determining virulence are still poorly understood. In astrocytes IFN γ primarily induces immunity-related GTPases (IRGs), providing a cell-autonomous resistance system. Here, we demonstrate that astrocytes prestimulated with IFN γ inhibit the proliferation of various avirulent, but not virulent, T. gondii strains. The two analyzed immunity-related GTPases Irga6 and Irgb6 accumulate at the PV only of avirulent T. gondii strains, whereas in virulent strains this accumulation is only detectable at very low levels. Both IRG proteins could temporarily be found at the same PV, but did only partially colocalize. Coinfection of avirulent and virulent parasites confirmed that the accumulation of the two analyzed IRGs was a characteristic of the individual PV and not determined by the presence of other strains of T. gondii in the same host cell. Thus, in astrocytes the accumulation of Irga6 and Irgb6 significantly differs between avirulent and virulent T. gondii strains correlating with the toxoplasmacidal properties suggesting a role for this process in parasite virulence.


Asunto(s)
Astrocitos/parasitología , GTP Fosfohidrolasas/fisiología , Proteínas de Unión al GTP Monoméricas/fisiología , Toxoplasma/patogenicidad , Toxoplasmosis Animal/inmunología , Toxoplasmosis Cerebral/inmunología , Animales , Astrocitos/química , Astrocitos/enzimología , Astrocitos/inmunología , Técnica del Anticuerpo Fluorescente , GTP Fosfohidrolasas/análisis , Ratones Endogámicos C57BL , Proteínas de Unión al GTP Monoméricas/análisis , Toxoplasma/inmunología , Toxoplasmosis Animal/parasitología , Toxoplasmosis Cerebral/parasitología , Virulencia/inmunología
15.
Sci Rep ; 13(1): 679, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639389

RESUMEN

Guanylate-binding proteins (GBPs) are a group of GTPases that are induced by interferon-[Formula: see text] and are crucial components of cell-autonomous immunity against intracellular pathogens. Here, we examine murine GBP2 (mGBP2), which we have previously shown to be an essential effector protein for the control of Toxoplasma gondii replication, with its recruitment through the membrane of the parasitophorous vacuole and its involvement in the destruction of this membrane likely playing a role. The overall aim of our work is to provide a molecular-level understanding of the mutual influences of mGBP2 and the parasitophorous vacuole membrane. To this end, we performed lipid-binding assays which revealed that mGBP2 has a particular affinity for cardiolipin. This observation was confirmed by fluorescence microscopy using giant unilamellar vesicles of different lipid compositions. To obtain an understanding of the protein dynamics and how this is affected by GTP binding, mGBP2 dimerization, and membrane binding, assuming that each of these steps are relevant for the function of the protein, we carried out standard as well as replica exchange molecular dynamics simulations with an accumulated simulation time of more than 30 µs. The main findings from these simulations are that mGBP2 features a large-scale hinge motion in its M/E domain, which is present in each of the studied protein states. When bound to a cardiolipin-containing membrane, this hinge motion is particularly pronounced, leading to an up and down motion of the M/E domain on the membrane, which did not occur on a membrane without cardiolipin. Our prognosis is that this up and down motion has the potential to destroy the membrane following the formation of supramolecular mGBP2 complexes on the membrane surface.


Asunto(s)
Membrana Celular , Proteínas de Unión al GTP , Animales , Ratones , Cardiolipinas/metabolismo , Proteínas de Unión al GTP/metabolismo , Simulación de Dinámica Molecular , Toxoplasma , Vacuolas/metabolismo , Multimerización de Proteína , Membrana Celular/metabolismo
16.
Protein Sci ; 32(12): e4818, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37916607

RESUMEN

Guanylate-binding proteins (GBPs) are essential interferon-γ-activated large GTPases that play a crucial role in host defense against intracellular bacteria and parasites. While their protective functions rely on protein polymerization, our understanding of the structural intricacies of these multimerized states remains limited. To bridge this knowledge gap, we present dimer models for human GBP1 (hGBP1) and murine GBP2 and 7 (mGBP2 and mGBP7) using an integrative approach, incorporating the crystal structure of hGBP1's GTPase domain dimer, crosslinking mass spectrometry, small-angle X-ray scattering, protein-protein docking, and molecular dynamics simulations. Our investigation begins by comparing the protein dynamics of hGBP1, mGBP2, and mGBP7. We observe that the M/E domain in all three proteins exhibits significant mobility and hinge motion, with mGBP7 displaying a slightly less pronounced motion but greater flexibility in its GTPase domain. These dynamic distinctions can be attributed to variations in the sequences of mGBP7 and hGBP1/mGBP2, resulting in different dimerization modes. Unlike hGBP1 and its close ortholog mGBP2, which exclusively dimerize through their GTPase domains, we find that mGBP7 exhibits three equally probable alternative dimer structures. The GTPase domain of mGBP7 is only partially involved in its dimerization, primarily due to an accumulation of negative charge, allowing mGBP7 to dimerize independently of GTP. Instead, mGBP7 exhibits a strong tendency to dimerize in an antiparallel arrangement across its stalks. The results of this work go beyond the sequence-structure-function relationship, as the sequence differences in mGBP7 and mGBP2/hGBP1 do not lead to different structures, but to different protein dynamics and dimerization. The distinct GBP dimer structures are expected to encode specific functions crucial for disrupting pathogen membranes.


Asunto(s)
Proteínas Portadoras , Proteínas de Unión al GTP , Animales , Ratones , Humanos , Proteínas Portadoras/metabolismo , Proteínas de Unión al GTP/química , GTP Fosfohidrolasas/metabolismo , Unión Proteica , Dimerización
17.
EMBO Mol Med ; 15(2): e15931, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36479617

RESUMEN

Infection with the intracellular bacterium Coxiella (C.) burnetii can cause chronic Q fever with severe complications and limited treatment options. Here, we identify the enzyme cis-aconitate decarboxylase 1 (ACOD1 or IRG1) and its product itaconate as protective host immune pathway in Q fever. Infection of mice with C. burnetii induced expression of several anti-microbial candidate genes, including Acod1. In macrophages, Acod1 was essential for restricting C. burnetii replication, while other antimicrobial pathways were dispensable. Intratracheal or intraperitoneal infection of Acod1-/- mice caused increased C. burnetii burden, weight loss and stronger inflammatory gene expression. Exogenously added itaconate restored pathogen control in Acod1-/- mouse macrophages and blocked replication in human macrophages. In axenic cultures, itaconate directly inhibited growth of C. burnetii. Finally, treatment of infected Acod1-/- mice with itaconate efficiently reduced the tissue pathogen load. Thus, ACOD1-derived itaconate is a key factor in the macrophage-mediated defense against C. burnetii and may be exploited for novel therapeutic approaches in chronic Q fever.


Asunto(s)
Coxiella burnetii , Fiebre Q , Animales , Humanos , Ratones , Coxiella burnetii/genética , Macrófagos , Fiebre Q/genética , Fiebre Q/microbiología
18.
Mol Oncol ; 16(17): 3107-3127, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35811571

RESUMEN

The tumor microenvironment (TM), consisting of the extracellular matrix (ECM), fibroblasts, endothelial cells, and immune cells, might affect tumor invasiveness and the outcome of standard chemotherapy. This study investigated the cross talk between germ cell tumors (GCT) and surrounding TM cells (macrophages, T-lymphocytes, endothelial cells, and fibroblasts) at the transcriptome and secretome level. Using high-throughput approaches of three-dimensional (3D) co-cultured cellular aggregates, this study offers newly identified pathways to be studied with regard to sensitivity toward cisplatin-based chemotherapy or tumor invasiveness as a consequence of the cross talk between tumor cells and TM components. Mass-spectrometry-based secretome analyses revealed that TM cells secreted factors involved in ECM organization, cell adhesion, angiogenesis, and regulation of insulin-like growth factor (IGF) transport. To evaluate direct cell-cell contacts, green fluorescent protein (GFP)-expressing GCT cells and mCherry-expressing TM cells were co-cultured in 3D. Afterward, cell populations were separated by flow cytometry and analyzed by RNA sequencing. Correlating the secretome with transcriptome data indicated molecular processes such as cell adhesion and components of the ECM being enriched in most cell populations. Re-analyses of secretome data with regard to lysine- and proline-hydroxylated peptides revealed a gain in proteins, such as collagens and fibronectin. Cultivation of GCT cells on collagen I/IV- or fibronectin-coated plates significantly elevated adhesive and migratory capacity, while decreasing cisplatin sensitivity of GCT cells. Correspondingly, cisplatin sensitivity was significantly reduced in GCT cells under the influence of conditioned medium from fibroblasts and endothelial cells. This study sheds light on the cross talk between GCT cells and their circumjacent TM, which results in deposition of the ECM and eventually promotes a pro-tumorigenic environment through enhanced migratory and adhesive capacity, as well as decreased cisplatin sensitivity. Hence, our observations indicate that targeting the ECM and its cellular components might be a novel therapeutic option in combination with cisplatin-based chemotherapy for GCT patients.


Asunto(s)
Neoplasias de Células Germinales y Embrionarias , Secretoma , Transcriptoma , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Humanos , Invasividad Neoplásica , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Transcriptoma/genética , Microambiente Tumoral
19.
Nat Commun ; 13(1): 4395, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906252

RESUMEN

Inflammasomes are cytosolic signaling complexes capable of sensing microbial ligands to trigger inflammation and cell death responses. Here, we show that guanylate-binding proteins (GBPs) mediate pathogen-selective inflammasome activation. We show that mouse GBP1 and GBP3 are specifically required for inflammasome activation during infection with the cytosolic bacterium Francisella novicida. We show that the selectivity of mouse GBP1 and GBP3 derives from a region within the N-terminal domain containing charged and hydrophobic amino acids, which binds to and facilitates direct killing of F. novicida and Neisseria meningitidis, but not other bacteria or mammalian cells. This pathogen-selective recognition by this region of mouse GBP1 and GBP3 leads to pathogen membrane rupture and release of intracellular content for inflammasome sensing. Our results imply that GBPs discriminate between pathogens, confer activation of innate immunity, and provide a host-inspired roadmap for the design of synthetic antimicrobial peptides that may be of use against emerging and re-emerging pathogens.


Asunto(s)
Proteínas Portadoras , Inflamasomas , Animales , Bacterias/metabolismo , Proteínas Portadoras/metabolismo , Citosol/metabolismo , Proteínas de Unión al GTP/metabolismo , Inmunidad Innata , Inflamasomas/metabolismo , Mamíferos/metabolismo , Ratones , Transducción de Señal
20.
mBio ; 11(1)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964735

RESUMEN

Members of the murine guanylate-binding protein family (mGBP) are induced by interferon gamma (IFN-γ) and have been shown to be important factors in cell-autonomous immunity toward the intracellular pathogen Toxoplasma gondii Previously, we identified that mGBP2 mediates disruption of the parasitophorous vacuole membrane (PVM) and directly assaults the plasma membrane of the parasite. Here, we show that mGBP7-deficient mice are highly susceptible to T. gondii infection. This is demonstrated by the loss of parasite replication control, pronounced development of ascites, and death of the animals in the acute infection phase. Interestingly, live-cell microscopy revealed that mGBP7 recruitment to the PVM occurs after mGBP2 recruitment, followed by disruption of the PVM and T. gondii integrity and accumulation of mGBP7 inside the parasite. This study defines mGBP7 as a crucial effector protein in resistance to intracellular T. gondiiIMPORTANCE Guanylate-binding proteins (GBPs) are induced by the inflammatory cytokine interferon gamma (IFN-γ) and have been shown to be important factors in the defense of the intracellular pathogen Toxoplasma gondii In previous studies, we showed that members of the mouse GBP family, such as mGBP2 and mGBP7, accumulate at the parasitophorous vacuole of T. gondii, which is the replicatory niche of the parasite. In this study, we show that mice deficient in mGBP7 succumb early after infection with T. gondii, showing a complete failure of resistance to the pathogen. On a molecular level, mGBP7 is found directly at the parasite, likely mediating its destruction.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Interacciones Huésped-Parásitos , Toxoplasma/fisiología , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología , Animales , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Interacciones Huésped-Parásitos/inmunología , Inmunidad Celular , Ratones , Ratones Noqueados , Transporte de Proteínas , Toxoplasmosis/inmunología , Toxoplasmosis/mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA