RESUMEN
Plastid-derived signals are known to coordinate expression of nuclear genes encoding plastid-localized proteins in a process termed retrograde signaling. To date, the identity of retrograde-signaling molecules has remained elusive. Here, we show that methylerythritol cyclodiphosphate (MEcPP), a precursor of isoprenoids produced by the plastidial methylerythritol phosphate (MEP) pathway, elicits the expression of selected stress-responsive nuclear-encoded plastidial proteins. Genetic and pharmacological manipulations of the individual MEP pathway metabolite levels demonstrate the high specificity of MEcPP as an inducer of these targeted stress-responsive genes. We further demonstrate that abiotic stresses elevate MEcPP levels, eliciting the expression of the aforementioned genes. We propose that the MEP pathway, in addition to producing isoprenoids, functions as a stress sensor and a coordinator of expression of targeted stress-responsive nuclear genes via modulation of the levels of MEcPP, a specific and critical retrograde-signaling metabolite.
Asunto(s)
Arabidopsis/citología , Arabidopsis/fisiología , Núcleo Celular/metabolismo , Eritritol/análogos & derivados , Transducción de Señal , Estrés Fisiológico , Aldehído-Liasas/genética , Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/genética , Enzimas/genética , Eritritol/metabolismo , Redes y Vías Metabólicas , Mutación , Fenotipo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Plastidios/metabolismo , Ácido Salicílico/metabolismoRESUMEN
Plant root systems play a pivotal role in plant physiology and exhibit diverse phenotypic traits. Understanding the genetic mechanisms governing root growth and development in model plants like maize is crucial for enhancing crop resilience to drought and nutrient limitations. This study focused on identifying and characterizing ZmPILS6, an annotated auxin efflux carrier, as a key regulator of various crown root traits in maize. ZmPILS6-modified roots displayed reduced network area and suppressed lateral root formation, which are desirable traits for the "steep, cheap, and deep" ideotype. The research revealed that ZmPILS6 localizes to the endoplasmic reticulum and plays a vital role in controlling the spatial distribution of indole-3-acetic acid (IAA or "auxin") in primary roots. The study also demonstrated that ZmPILS6 can actively efflux IAA when expressed in yeast. Furthermore, the loss of ZmPILS6 resulted in significant proteome remodeling in maize roots, particularly affecting hormone signaling pathways. To identify potential interacting partners of ZmPILS6, a weighted gene coexpression analysis was performed. Altogether, this research contributes to the growing knowledge of essential genetic determinants governing maize root morphogenesis, which is crucial for guiding agricultural improvement strategies.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Raíces de Plantas , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Morfogénesis/genética , Transporte BiológicoRESUMEN
Transcriptional regulators of the general stress response (GSR) reprogram the expression of selected genes to transduce informational signals into cellular events, ultimately manifested in a plant's ability to cope with environmental challenges. Identification of the core GSR regulatory proteins will uncover the principal modules and their mode of action in the establishment of adaptive responses. To define the GSR regulatory components, we employed a yeast-one-hybrid assay to identify the protein(s) binding to the previously established functional GSR motif, termed the rapid stress response element (RSRE). This led to the isolation of octadecanoid-responsive AP2/ERF-domain transcription factor 47 (ORA47), a methyl jasmonate inducible protein. Subsequently, ORA47 transcriptional activity was confirmed using the RSRE-driven luciferase (LUC) activity assay performed in the ORA47 loss- and gain-of-function lines introgressed into the 4xRSRE::Luc background. In addition, the prime contribution of CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 (CAMTA3) protein in the induction of RSRE was reaffirmed by genetic studies. Moreover, exogenous application of methyl jasmonate led to enhanced levels of ORA47 and CAMTA3 transcripts, as well as the induction of RSRE::LUC activity. Metabolic analyses illustrated the reciprocal functional inputs of ORA47 and CAMTA3 in increasing JA levels. Lastly, transient assays identified JASMONATE ZIM-domain1 (JAZ1) as a repressor of RSRE::LUC activity. Collectively, the present study provides fresh insight into the initial features of the mechanism that transduces informational signals into adaptive responses. This mechanism involves the functional interplay between the JA biosynthesis/signaling cascade and the transcriptional reprogramming that potentiates GSR. Furthermore, these findings offer a window into the role of intraorganellar communication in the establishment of adaptive responses.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
As a universal second messenger, calcium (Ca2+) transmits specific cellular signals via a spatiotemporal signature generated from its extracellular source and internal stores. Our knowledge of the mechanisms underlying the generation of a Ca2+ signature is hampered by limited tools for simultaneously monitoring dynamic Ca2+ levels in multiple subcellular compartments. To overcome the limitation and to further improve spatiotemporal resolutions, we have assembled a molecular toolset (CamelliA lines) in Arabidopsis (Arabidopsis thaliana) that enables simultaneous and high-resolution monitoring of Ca2+ dynamics in multiple subcellular compartments through imaging different single-colored genetically encoded calcium indicators. We uncovered several Ca2+ signatures in three types of Arabidopsis cells in response to internal and external cues, including rapid oscillations of cytosolic Ca2+ and apical plasma membrane Ca2+ influx in fast-growing Arabidopsis pollen tubes, the spatiotemporal relationship of Ca2+ dynamics in four subcellular compartments of root epidermal cells challenged with salt, and a shockwave-like Ca2+ wave propagating in laser-wounded leaf epidermis. These observations serve as a testimony to the wide applicability of the CamelliA lines for elucidating the subcellular sources contributing to the Ca2+ signatures in plants.
Asunto(s)
Arabidopsis , Camellia , Arabidopsis/genética , Arabidopsis/metabolismo , Calcio/metabolismo , Camellia/genética , Camellia/metabolismo , Citosol/metabolismo , Tubo Polínico/metabolismoRESUMEN
The methylerythritol phosphate (MEP) pathway is responsible for producing isoprenoids, metabolites with essential functions in the bacterial kingdom and plastid-bearing organisms including plants and Apicomplexa. Additionally, the MEP-pathway intermediate methylerythritol cyclodiphosphate (MEcPP) serves as a plastid-to-nucleus retrograde signal. A suppressor screen of the high MEcPP accumulating mutant plant (ceh1) led to the isolation of 3 revertants (designated Rceh1-3) resulting from independent intragenic substitutions of conserved amino acids in the penultimate MEP-pathway enzyme, hydroxymethylbutenyl diphosphate synthase (HDS). The revertants accumulate varying MEcPP levels, lower than that of ceh1, and exhibit partial or full recovery of MEcPP-mediated phenotypes, including stunted growth and induced expression of stress response genes and the corresponding metabolites. Structural modeling of HDS and ligand docking spatially position the substituted residues at the MEcPP binding pocket and cofactor binding domain of the enzyme. Complementation assays confirm the role of these residues in suppressing the ceh1 mutant phenotypes, albeit to different degrees. In vitro enzyme assays of wild type and HDS variants exhibit differential activities and reveal an unanticipated mismatch between enzyme kinetics and the in vivo MEcPP levels in the corresponding Rceh lines. Additional analyses attribute the mismatch, in part, to the abundance of the first and rate-limiting MEP-pathway enzyme, DXS, and further suggest MEcPP as a rheostat for abundance of the upstream enzyme instrumental in fine-tuning of the pathway flux. Collectively, this study identifies critical residues of a key MEP-pathway enzyme, HDS, valuable for synthetic engineering of isoprenoids, and as potential targets for rational design of antiinfective drugs.
Asunto(s)
Sustitución de Aminoácidos , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Enzimas/genética , Oxidorreductasas/genética , Terpenos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas , Núcleo Celular/metabolismo , Enzimas/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Oxidorreductasas/metabolismo , Plantas Modificadas Genéticamente , Plastidios/genética , Plastidios/metabolismoRESUMEN
Plants employ an array of intricate and hierarchical signaling cascades to perceive and transduce informational cues to synchronize and tailor adaptive responses. Systemic stress response (SSR) is a recognized complex signaling and response network quintessential to plant's local and distal responses to environmental triggers; however, the identity of the initiating signals has remained fragmented. Here, we show that both biotic (aphids and viral pathogens) and abiotic (high light and wounding) stresses induce accumulation of the plastidial-retrograde-signaling metabolite methylerythritol cyclodiphosphate (MEcPP), leading to reduction of the phytohormone auxin and the subsequent decreased expression of the phosphatase PP2C.D1. This enables phosphorylation of mitogen-activated protein kinases 3/6 and the consequential induction of the downstream events ultimately, resulting in biosynthesis of the two SSR priming metabolites pipecolic acid and N-hydroxy-pipecolic acid. This work identifies plastids as a major initiation site, and the plastidial retrograde signal MEcPP as an initiator of a multicomponent signaling cascade potentiating the biosynthesis of SSR activators, in response to biotic and abiotic triggers.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Plastidios/metabolismoRESUMEN
BACKGROUND: Isoprenoids are the most ancient and essential class of metabolites produced in all organisms, either via mevalonate (MVA)-and/or methylerythritol phosphate (MEP)-pathways. The MEP-pathway is present in all plastid-bearing organisms and most eubacteria. However, no comprehensive study reveals the origination and evolutionary characteristics of MEP-pathway genes in eukaryotes. RESULTS: Here, detailed bioinformatics analyses of the MEP-pathway provide an in-depth understanding the evolutionary history of this indispensable biochemical route, and offer a basis for the co-existence of the cytosolic MVA- and plastidial MEP-pathway in plants given the established exchange of the end products between the two isoprenoid-biosynthesis pathways. Here, phylogenetic analyses establish the contributions of both cyanobacteria and Chlamydiae sequences to the plant's MEP-pathway genes. Moreover, Phylogenetic and inter-species syntenic block analyses demonstrate that six of the seven MEP-pathway genes have predominantly remained as single-copy in land plants in spite of multiple whole-genome duplication events (WGDs). Substitution rate and domain studies display the evolutionary conservation of these genes, reinforced by their high expression levels. Distinct phenotypic variation among plants with reduced expression levels of individual MEP-pathway genes confirm the indispensable function of each nuclear-encoded plastid-targeted MEP-pathway enzyme in plant growth and development. CONCLUSION: Collectively, these findings reveal the polyphyletic origin and restrict conservation of MEP-pathway genes, and reinforce the potential function of the individual enzymes beyond production of the isoprenoids intermediates.
Asunto(s)
Cianobacterias , Eucariontes , Cianobacterias/genética , Eritritol , Ácido Mevalónico , Fosfatos , Filogenia , TerpenosRESUMEN
The transition from an engulfed autonomous unicellular photosynthetic bacterium to a semiautonomous endosymbiont plastid was accompanied by the transfer of genetic material from the endosymbiont to the nuclear genome of the host, followed by the establishment of plastid-to-nucleus (retrograde) signaling. The retrograde coordinated activities of the two subcellular genomes ensure chloroplast biogenesis and function as the photosynthetic hub and sensing and signaling center that tailors growth-regulating and adaptive processes. This review specifically focuses on the current knowledge of selected stress-induced retrograde signals, genomes uncoupled 1 (GUN1), methylerythritol cyclodiphosphate (MEcPP), apocarotenoid and ß-cyclocitral, and 3'-phosphoadenosine 5'-phosphate (PAP), which evolved to establish the photoautotrophic lifestyle and are instrumental in the integration of light and hormonal signaling networks to ultimately fashion adaptive responses in an ever-changing environment.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas , Plastidios/metabolismo , Transducción de SeñalRESUMEN
Exquisitely regulated plastid-to-nucleus communication by retrograde signaling pathways is essential for fine-tuning of responses to the prevailing environmental conditions. The plastidial retrograde signaling metabolite methylerythritol cyclodiphosphate (MEcPP) has emerged as a stress signal transduced into a diverse ensemble of response outputs. Here, we demonstrate enhanced phytochrome B protein abundance in red light-grown MEcPP-accumulating ceh1 mutant Arabidopsis (Arabidopsis thaliana) plants relative to wild-type seedlings. We further establish MEcPP-mediated coordination of phytochrome B with auxin and ethylene signaling pathways and uncover differential hypocotyl growth of red light-grown seedlings in response to these phytohormones. Genetic and pharmacological interference with ethylene and auxin pathways outlines the hierarchy of responses, placing ethylene epistatic to the auxin signaling pathway. Collectively, our findings establish a key role of a plastidial retrograde metabolite in orchestrating the transduction of a repertoire of signaling cascades. This work positions plastids at the zenith of relaying information coordinating external signals and internal regulatory circuitry to secure organismal integrity.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Fitocromo B/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/efectos de la radiación , Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , Transporte Biológico/efectos de la radiación , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Vías Biosintéticas/efectos de la radiación , Epistasis Genética/efectos de los fármacos , Epistasis Genética/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Ácidos Indolacéticos/farmacología , Luz , Mutación/genética , Fitocromo B/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiaciónRESUMEN
Seed germination is a fundamental process in the plant life cycle and is regulated by functionally opposing internal and external inputs. Here we explored the role of a negative regulator of photomorphogenesis, a B-box-containing protein (BBX19), as a molecular link between the inhibitory action of the phytohormone abscisic acid (ABA) and the promoting role of light in germination. We show that seeds of BBX19-overexpressing lines, in contrast to those of BBX19 RNA interference lines, display ABA hypersensitivity, albeit independently of elongated hypocotyl 5 (HY5). Moreover, we establish that BBX19 functions neither via perturbation of GA signaling, the ABA antagonistic phytohormone, nor through interference with the DELLA protein germination repressors. Rather, BBX19 functions as an inducer of ABA INSENSITIVE5 (ABI5) by binding to the light-responsive GT1 motifs in the gene promoter. In summary, we identify BBX19 as a regulatory checkpoint, directing diverse developmental processes and tailoring adaptive responses to distinct endogenous and exogenous signals.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Germinación/genética , Semillas/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Germinación/efectos de los fármacos , Giberelinas/metabolismo , Luz , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Unión Proteica , Plantones/efectos de los fármacos , Plantones/embriología , Plantones/genética , Plantones/metabolismo , Semillas/efectos de los fármacos , Semillas/embriología , Semillas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Nicotiana/metabolismo , Factores de Transcripción/genética , Regulación hacia ArribaRESUMEN
The lipid-derived hormones jasmonates (JAs) play key functions in a wide range of physiological and developmental processes that regulate growth, secondary metabolism and defense against biotic and abiotic stresses. In this connection, biosynthesis, tissue-specific distribution, metabolism, perception, signaling of JAs have been the target of extensive studies. In recent years, the involvement of JAs signaling pathway in the regulation of growth and adaptive responses to environmental challenges has been further examined. However, JAs-mediated mechanisms underlying the transition from 'growth mode' to 'adaptive mode' remain ambiguous. Combined analysis of transgenic lines deficient in JAs signaling in conjunction with the data from JAs-treated plants revealed the function of these hormones in rewiring of central metabolism. The collective data illustrate JAs-mediated decrease in the levels of metabolites associated with active growth such as sucrose, raffinose, orotate, citrate, malate, and an increase in phosphorylated hexoses, responsible for the suppression of growth and photosynthesis, concurrent with the induction of protective metabolites, such as aromatic and branched-chain amino acids, and aspartate family of metabolites. This finding provides an insight into the function of JAs in shifting the central metabolism from the production of growth-promoting metabolites to protective compounds and expands our understanding of the role of JAs in resource allocation in response to environmental challenges.
Asunto(s)
Ciclopentanos/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de SeñalRESUMEN
Environmental stresses induce production of oxylipins synthesized by the two main biosynthetic branches, allene oxide synthase (AOS) and hydroperoxide lyase (HPL). Here, we investigate how waterlogging-mediated alteration of AOS- and HPL-derived metabolic profile results in modulation of central metabolism and ultimately enhanced tolerance to this environmental stress in Arabidopsis thaliana. Waterlogging leads to increased levels of AOS- and HPL-derived metabolites, and studies of genotypes lacking either one or both branches further support the key function of these oxylipins in waterlogging tolerance. Targeted quantitative metabolic profiling revealed oxylipin-dependent alterations in selected primary metabolites, and glycolytic and citric acid cycle intermediates, as well as a prominent shift in sucrose cleavage, hexose activation, the methionine salvage pathway, shikimate pathway, antioxidant system, and energy metabolism in genotypes differing in the presence of one or both functional branches of the oxylipin biosynthesis pathway. Interestingly, despite some distinct metabolic alterations caused specifically by individual branches, overexpression of HPL partially or fully alleviates the majority of altered metabolic profiles observed in AOS-depleted lines. Collectively, these data identify the key role of AOS- and HPL-derived oxylipins in altering central metabolism, and further provide a metabolic platform targeted at identification of gene candidates for enhancing plant tolerance to waterlogging.
Asunto(s)
Arabidopsis/fisiología , Oxilipinas/metabolismo , Estrés Fisiológico , Agua/fisiología , Aldehído-Liasas/metabolismo , Arabidopsis/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidorreductasas Intramoleculares/metabolismoRESUMEN
The general stress response (GSR) is an evolutionarily conserved rapid and transient transcriptional reprograming of genes central for transducing environmental signals into cellular responses, leading to metabolic and physiological readjustments to cope with prevailing conditions. Defining the regulatory components of the GSR will provide crucial insight into the design principles of early stress-response modules and their role in orchestrating master regulators of adaptive responses. Overaccumulation of methylerythritol cyclodiphosphate (MEcPP), a bifunctional chemical entity serving as both a precursor of isoprenoids produced by the plastidial methylerythritol phosphate (MEP) pathway and a stress-specific retrograde signal, in ceh1 (constitutively expressing hydroperoxide lyase1)-mutant plants leads to large-scale transcriptional alterations. Bioinformatic analyses of microarray data in ceh1 plants established the overrepresentation of a stress-responsive cis element and key GSR marker, the rapid stress response element (RSRE), in the promoters of robustly induced genes. ceh1 plants carrying an established 4×RSRE:Luciferase reporter for monitoring the GSR support constitutive activation of the response in this mutant background. Genetics and pharmacological approaches confirmed the specificity of MEcPP in RSRE induction via the transcription factor CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3), in a calcium-dependent manner. Moreover, CAMTA3-dependent activation of IRE1a (inositol-requiring protein-1) and bZIP60 (basic leucine zipper 60), two RSRE containing unfolded protein-response genes, bridges MEcPP-mediated GSR induction to the potentiation of protein-folding homeostasis in the endoplasmic reticulum. These findings introduce the notion of transcriptional regulation by a key plastidial retrograde signaling metabolite that induces nuclear GSR, thereby offering a window into the role of interorgannellar communication in shaping cellular adaptive responses.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Eritritol/análogos & derivados , Regulación de la Expresión Génica de las Plantas , Plastidios/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Enzimas/genética , Enzimas/metabolismo , Eritritol/metabolismo , Eritritol/farmacología , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Mutación , Reguladores del Crecimiento de las Plantas/metabolismo , Elementos de Respuesta/genética , Fosfatos de Azúcar/metabolismo , Factores de Transcripción/genética , Respuesta de Proteína Desplegada/genéticaRESUMEN
To maintain homeostasis in the face of intrinsic and extrinsic insults, cells have evolved elaborate quality control networks to resolve damage at multiple levels. Interorganellar communication is a key requirement for this maintenance, however the underlying mechanisms of this communication have remained an enigma. Here we integrate the outcome of transcriptomic, proteomic, and metabolomics analyses of genotypes including ceh1, a mutant with constitutively elevated levels of both the stress-specific plastidial retrograde signaling metabolite methyl-erythritol cyclodiphosphate (MEcPP) and the defense hormone salicylic acid (SA), as well as the high MEcPP but SA deficient genotype ceh1/eds16, along with corresponding controls. Integration of multi-omic analyses enabled us to delineate the function of MEcPP from SA, and expose the compartmentalized role of this retrograde signaling metabolite in induction of distinct but interdependent signaling cascades instrumental in adaptive responses. Specifically, here we identify strata of MEcPP-sensitive stress-response cascades, among which we focus on selected pathways including organelle-specific regulation of jasmonate biosynthesis; simultaneous induction of synthesis and breakdown of SA; and MEcPP-mediated alteration of cellular redox status in particular glutathione redox balance. Collectively, these integrated multi-omic analyses provided a vehicle to gain an in-depth knowledge of genome-metabolism interactions, and to further probe the extent of these interactions and delineate their functional contributions. Through this approach we were able to pinpoint stress-mediated transcriptional and metabolic signatures and identify the downstream processes modulated by the independent or overlapping functions of MEcPP and SA in adaptive responses.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Glutatión/metabolismo , Metabolómica/métodos , Oxilipinas/metabolismo , Proteómica/métodos , Ácido Salicílico/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Transcriptoma/genéticaRESUMEN
Hypocotyl elongation is a highly coordinated physiological response regulated by myriad internal and external cues. Here, we show that BBX19, a transcriptional regulator with two B-box motifs, is a positive regulator of growth; diminished BBX19 expression by RNA interference reduces hypocotyl length, and its constitutive expression promotes growth. This function of BBX19 is dependent on the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), EARLY FLOWERING3 (ELF3), and PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5. BBX19 is nucleus-colocalized and interacts physically with COP1 and ELF3, a component of the evening complex that represses the expression of PIF4 and PIF5. Moreover, ELF3 protein abundance inversely correlates with BBX19 expression levels in a COP1-dependent manner. By contrast, PIF expression, coinciding with the initiation of hypocotyl growth in the early evening, is positively correlated with the BBX19 transcript abundance. These results collectively establish BBX19 as an adaptor that binds to and recruits ELF3 for degradation by COP1 and, as such, dynamically gates the formation of the evening complex, resulting in derepression of PIF4/5. This finding refines our perspective on how plants grow by providing a molecular link between COP1, ELF3, and PIF4/5 as an underlying mechanism of photomorphogenic development in Arabidopsis thaliana.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Ubiquitina-Proteína LigasasRESUMEN
Cellular homeostasis in response to internal and external stimuli requires a tightly coordinated interorgannellar communication network. We recently identified methylerythritol cyclodiphosphate (MEcPP) as a novel stress-specific retrograde signaling metabolite that accumulates in response to environmental perturbations to relay information from plastids to the nucleus. We now demonstrate, using a combination of transcriptome and proteome profiling approaches, that mutant plants (ceh1) with high endogenous levels of MEcPP display increased transcript and protein levels for a subset of the core unfolded protein response (UPR) genes. The UPR is an adaptive cellular response conserved throughout eukaryotes to stress conditions that perturb the endoplasmic reticulum (ER) homeostasis. Our results suggest that MEcPP directly triggers the UPR. Exogenous treatment with MEcPP induces the rapid and transient induction of both the unspliced and spliced forms of the UPR gene bZIP60. Moreover, compared with the parent background (P), ceh1 mutants are less sensitive to the ER-stress-inducing agent tunicamycin (Tm). P and ceh1 plants treated with Tm display similar UPR transcript profiles, suggesting that although MEcPP accumulation causes partial induction of selected UPR genes, full induction is triggered by accumulation of misfolded proteins. This finding refines our perspective of interorgannellar communication by providing a link between a plastidial retrograde signaling molecule and its targeted ensemble of UPR components in ER.
Asunto(s)
Retículo Endoplásmico/metabolismo , Eritritol/análogos & derivados , Regulación de la Expresión Génica de las Plantas , Plastidios/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Estrés del Retículo Endoplásmico , Eritritol/química , Perfilación de la Expresión Génica , Homeostasis , Análisis por Micromatrices , Proteínas de Plantas/metabolismo , Pliegue de Proteína , Proteoma , Proteómica , Transducción de Señal , Transcriptoma , Respuesta de Proteína DesplegadaRESUMEN
MAIN CONCLUSION: This study describes a new role for hydroperoxide lyase branch of oxylipin biosynthesis pathway in protecting photosynthetic apparatus under high light conditions. Lipid-derived signaling molecules, oxylipins, produced by a multi-branch pathway are central in regulation of a wide range of functions. The two most known branches, allene oxide synthase (AOS) and 13-hydroperoxide lyase (HPL) pathways, are best recognized as producers of defense compounds against biotic challenges. In the present work, we examine the role of these two oxylipin branches in plant tolerance to the abiotic stress, namely excessive light. Towards this goal, we have analyzed variable chlorophyll fluorescence parameters of intact leaves of Arabidopsis thaliana genotypes with altered oxylipin profile, followed by examining the impact of exogenous application of selected oxylipins on functional activity of photosynthetic apparatus in intact leaves and isolated thylakoid membranes. Our findings unequivocally bridge the function of oxylipins to photosynthetic processes. Specifically, HPL overexpressing lines display enhanced adaptability in response to high light treatment as evidenced by lower rate constant of photosystem 2 (PS2) photoinhibition and higher rate constant of PS2 recovery after photoinhibition. In addition, exogenous application of linolenic acid, 13-hydroperoxy linolenic acid, 12-oxophytodienoic acid, and methyl jasmonate individually, suppresses photochemical activity of PS2 in intact plants and isolated thylakoid membranes, while application of HPL-branch metabolites-does not. Collectively these data implicate function of HPL branch of oxylipin biosynthesis pathway in guarding PS2 under high light conditions, potentially exerted through tight regulation of free linolenic acid and 13-hydroperoxy linolenic acid levels, as well as competition with production of metabolites by AOS-branch of the oxylipin pathway.
Asunto(s)
Oxilipinas/metabolismo , Acetatos/metabolismo , Aldehído-Liasas/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Luz , Fotosíntesis/genética , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo , Ácido alfa-Linolénico/metabolismoRESUMEN
The timely transition of vegetative to reproductive development is coordinated through quantitative regulation of floral pathway genes in response to physiological and environmental cues. Here, we show that the circadian-controlled expression of the Arabidopsis thaliana floral transition regulators FLOWERING LOCUS T (FT) and CONSTANS (CO) is antiphasic to that of BBX19, a transcription factor with two B-Box motifs. Diminished expression of BBX19 by RNA interference accelerates flowering, and constitutive expression of BBX19 delays flowering under inductive photoperiods. This delay is not accompanied by the alteration of CO expression levels but rather by a reduction of transcript levels of FT and the FT-regulated genes SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1, LEAFY, and FRUITFUL. Similar to CO, BBX19 is expressed in vasculature. BBX19 and CO colocalize in the nucleus and interact physically in vivo. In transient assays, coinfiltration of 10-fold more CO overcomes the BBX19-mediated repression of FT activation. Substitution of the conserved Cys-25 to Ser in the BBX19 Box1 motif abolishes the BBX19-CO interaction and eliminates the negative regulation of flowering time, while the analogous C76S substitution in the Box2 motif is ineffective. Together, these results implicate BBX19 as a circadian clock output that depletes the active CO pool to accurately monitor daylength and precisely time FT expression.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Unión al ADN/metabolismo , Flores/genética , Flores/fisiología , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Fotoperiodo , Haz Vascular de Plantas/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genéticaRESUMEN
Hormonal crosstalk is central for tailoring plant responses to the nature of challenges encountered. The role of antagonism between the two major defense hormones, salicylic acid (SA) and jasmonic acid (JA), and modulation of this interplay by ethylene (ET) in favor of JA signaling pathway in plant stress responses is well recognized, but the underlying mechanism is not fully understood. Here, we show the opposing function of two transcription factors, ethylene insensitive3 (EIN3) and EIN3-Like1 (EIL1), in SA-mediated suppression and JA-mediated activation of PLANT DEFENSIN1.2 (PDF1.2). This functional duality is mediated via their effect on protein, not transcript levels of the PDF1.2 transcriptional activator octadecanoid-responsive Arabidopsis59 (ORA59). Specifically, JA induces ORA59 protein levels independently of EIN3/EIL1, whereas SA reduces the protein levels dependently of EIN3/EIL1. Co-infiltration assays revealed nuclear co-localization of ORA59 and EIN3, and split-luciferase together with yeast-two-hybrid assays established their physical interaction. The functional ramification of the physical interaction is EIN3-dependent degradation of ORA59 by the 26S proteasome. These findings allude to SA-responsive reduction of ORA59 levels mediated by EIN3 binding to and targeting of ORA59 for degradation, thus nominating ORA59 pool as a coordination node for the antagonistic function of ET/JA and SA.
Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Defensinas/genética , Etilenos/metabolismo , Proteínas Nucleares/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/farmacología , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proteínas de Unión al ADN , Defensinas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Reporteros , Modelos Biológicos , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
The exquisite harmony between hormones and their corresponding signaling pathways is central to prioritizing plant responses to simultaneous and/or successive environmental trepidations. The crosstalk between jasmonic acid (JA) and salicylic acid (SA) is an established effective mechanism that optimizes and tailors plant adaptive responses. However, the underlying regulatory modules of this crosstalk are largely unknown. Global transcriptomic analyses of mutant plants (ceh1) with elevated levels of the stress-induced plastidial retrograde signaling metabolite 2-C-methyl-D-erythritol cyclopyrophosphate (MEcPP) revealed robustly induced JA marker genes, expected to be suppressed by the presence of constitutively high SA levels in the mutant background. Analyses of a range of genotypes with varying SA and MEcPP levels established the selective role of MEcPP-mediated signal(s) in induction of JA-responsive genes in the presence of elevated SA. Metabolic profiling revealed the presence of high levels of the JA precursor 12-oxo-phytodienoic acid (OPDA), but near wild type levels of JA in the ceh1 mutant plants. Analyses of coronatine-insensitive 1 (coi1)/ceh1 double mutant plants confirmed that the MEcPP-mediated induction is JA receptor COI1 dependent, potentially through elevated OPDA. These findings identify MEcPP as a previously unrecognized central regulatory module that induces JA-responsive genes in the presence of high SA, thereby staging a multifaceted plant response within the environmental context.