Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sensors (Basel) ; 24(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793831

RESUMEN

This paper presents an extended work on the Finite Element Method (FEM) simulation of Love Wave (LW) sensors in a liquid medium. Two models are proposed to simulate the multiphysical response of the sensor. Both are extensively described in terms of principle, composition and behavior, making their applications easily reproducible by the sensor community. The first model is a Representative Volume Element (RVE) simulating the transducer and the second focuses on the sensor's longitudinal (OXZ) cut which simulates the multiphysical responses of the device. Sensitivity of the LW device to variations in the rheological and dielectric properties of liquids is estimated and then compared to a large set of measurements issued from LW sensors presenting different technological characteristics. This integral approach allows for a deeper insight into the multiphysical behavior of the LW sensor. This article also explores the advantages and drawbacks of each model. Both are in good accordance with the measurements and could be used for various applications, for which a non-exhaustive list is proposed in the conclusion.

2.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36679600

RESUMEN

The present study aimed to develop and characterize new heavy metal sensors functionalized by extracellular polymeric substances (EPSs) isolated from a Tunisian thermophilic microalga strain Graesiella sp. The elaborated sensor showed a highly homogeneous character and revealed a microstructural lamellar arrangement, high crystalline nature, and several functional groups. Electrochemical impedance spectroscopy (EIS) and acoustic wave sensing were used as sensing techniques to explore the ability of microalgae-EPS-functionalized sensors to detect cadmium and mercury as heavy metals. For impedimetric measurements, a two-dipole circuit was adopted and showed good-fitted results with a low total error. The acoustic sensor platforms showed good compatibility with EPS in adjacent water. For both EPS-functionalized sensors, metal ions (Cd2+, Hg2+) were successfully detected in the concentration range from 10-10 M to 10-4 M. Impedimetric sensor was more sensitive to Cd2+ at low concentrations before saturation at 10-7 M, while the acoustic sensor exhibited more sensitivity to Hg2+ over the full range. The results highlight a new potential alternative to use microalgae EPSs as a sensitive coating material for the detection of heavy metals. However, its use in a real liquid medium requires further investigation of its selectivity in the presence of other compounds.


Asunto(s)
Mercurio , Metales Pesados , Microalgas , Cadmio/química , Matriz Extracelular de Sustancias Poliméricas , Mercurio/química
3.
Analyst ; 147(23): 5477-5485, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36321954

RESUMEN

Lossy mode resonance (LMR)-based optical sensors change their wavelength upon contact with substances or gases. This allows developing applications to detect the refractive index of the surrounding medium and even the thickness of the biolayers deposited on the waveguide. In the same way, when acoustic sensors are in contact with a liquid, it is possible to determine parameters, especially mechanical ones such as shape of the particle or molecule, mass load, elastic constants and viscosity of the liquid. This work reports the development of a system that combines LMR with surface acoustic wave (SAW) technologies to characterize a liquid in terms of its refractive index and viscosity simultaneously. Conveniently prepared glucose solutions are used for sensor calibration. The refractive index of the solutions ranges from 1.33 to 1.41 and its viscosity ranges from 1.005 mPa·s to 9 mPa·s, respectively. A sensitivity of 332 nm per RIU has been achieved with the optical sensor while the acoustic sensor has shown a sensitivity of -1.5 dB/(mPa·s). This new combinational concept could be expanded to the development of more demanding applications such as chemical sensors or biosensors.

4.
Anal Chem ; 91(10): 6775-6782, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31034205

RESUMEN

We describe the development of an original faradaic current-to-fluorescence conversion scheme. The proposed instrumental strategy consists of coupling the electrochemical reaction of any species at an electrode under potentiostatic control with the fluorescence emission of a species produced at the counter electrode. In order to experimentally validate this scheme, the fluorogenic species resazurin is chosen as a fluorescent reporter molecule, and its complex reduction mechanism is first studied in unprecedented detail. This kinetic study is carried out by recording simultaneous cyclic voltammograms and voltfluorograms at the same electrode. Numerical simulations are used to account for the experimental current and fluorescence signals, to analyze their degree of correlation, and to decipher their relation to resazurin reduction kinetics. It is then shown that, provided that the reduction of resazurin takes place at a micrometer-sized electrode, the fluorescence emission perfectly tracks the faradaic current. By implementing this ideal configuration at the counter electrode of a potentiostatic setup, it is finally demonstrated that the oxidation reaction of a nonfluorescent species at the working electrode can be quantitatively transduced into simultaneous emission of fluorescence.

5.
Sensors (Basel) ; 20(1)2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31877726

RESUMEN

This paper presents an experimental platform allowing in situ measurement in an aqueous medium using an acoustic Love wave sensor. The aim of this platform, which includes the sensor, a test cell for electrical connections, a microfluidic chip, and a readout electronic circuit, is to realize a first estimation of water quality without transportation of water samples from the field to the laboratory as a medium-term objective. In the first step, to validate the ability of such a platform to operate in the field and in Amazonian water, an isolated and difficult-to-access location, namely, the floodplain Logo Do Curuaï in the Brazilian Amazon, was chosen. The ability of such a platform to be transported, installed on site, and used is discussed in terms of user friendliness and versatility. The response of the Love wave sensor to in situ water samples is estimated according to the physical parameters of Amazonian water. Finally, the very good quality of the acoustic response is established, potential further improvements are discussed, and the paper is concluded.

6.
Sensors (Basel) ; 19(8)2019 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-31013883

RESUMEN

This paper presents the feasibility of a fully inkjet-printed, microwave flexible gas sensor based on a resonant electromagnetic transducer in microstrip technology and the impact of the printing process that affects the characteristics of the gas sensor. The sensor is fabricated using silver ink and multi-wall carbon nanotubes (MWCNTs) embedded in poly (3,4-ethylenedioxythiophene) polystyrene (PEDOT: PSS-MWCNTs) as sensitive material for Volatile Organic Compounds (VOCs) detection. Particular attention is paid to the characterization of the printed materials and the paper substrate. The manufacturing process results in a change in relative permittivity of the paper substrate by nearly 20%. Electrical characterization, made in the presence of gas, validates our theoretical approach and the radiofrequency (RF) gas sensor proof of concept.

7.
Sensors (Basel) ; 16(6)2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27331814

RESUMEN

Cancer is a leading cause of death worldwide and actual analytical techniques are restrictive in detecting it. Thus, there is still a challenge, as well as a need, for the development of quantitative non-invasive tools for the diagnosis of cancers and the follow-up care of patients. We introduce first the overall interest of electronic nose or tongue for such application of microsensors arrays with data processing in complex media, either gas (e.g., Volatile Organic Compounds or VOCs as biomarkers in breath) or liquid (e.g., modified nucleosides as urinary biomarkers). Then this is illustrated with a versatile acoustic wave transducer, functionalized with molecularly-imprinted polymers (MIP) synthesized for adenosine-5'-monophosphate (AMP) as a model for nucleosides. The device including the thin film coating is described, then static measurements with scanning electron microscopy (SEM) and electrical characterization after each step of the sensitive MIP process (deposit, removal of AMP template, capture of AMP target) demonstrate the thin film functionality. Dynamic measurements with a microfluidic setup and four targets are presented afterwards. They show a sensitivity of 5 Hz·ppm(-1) of the non-optimized microsensor for AMP detection, with a specificity of three times compared to PMPA, and almost nil sensitivity to 3'AMP and CMP, in accordance with previously published results on bulk MIP.


Asunto(s)
Técnicas Biosensibles/métodos , Neoplasias/diagnóstico por imagen , Polímeros/química , Nariz Electrónica , Humanos , Impresión Molecular/métodos
8.
Micromachines (Basel) ; 14(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36677104

RESUMEN

The past few decades have witnessed the ultra-fast development of wireless telecommunication systems, such as mobile communication, global positioning, and data transmission systems. In these applications, radio frequency (RF) acoustic devices, such as bulk acoustic waves (BAW) and surface acoustic waves (SAW) devices, play an important role. As the integration technology of BAW and SAW devices is becoming more mature day by day, their application in the physical and biochemical sensing and actuating fields has also gradually expanded. This has led to a profusion of associated literature, and this article particularly aims to help young professionals and students obtain a comprehensive overview of such acoustic technologies. In this perspective, we report and discuss the key basic principles of SAW and BAW devices and their typical geometries and electrical characterization methodology. Regarding BAW devices, we give particular attention to film bulk acoustic resonators (FBARs), due to their advantages in terms of high frequency operation and integrability. Examples illustrating their application as RF filters, physical sensors and actuators, and biochemical sensors are presented. We then discuss recent promising studies that pave the way for the exploitation of these elastic wave devices for new applications that fit into current challenges, especially in quantum acoustics (single-electron probe/control and coherent coupling between magnons and phonons) or in other fields.

9.
Biosens Bioelectron ; 173: 112790, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33190047

RESUMEN

Prostate cancer represents one of the most common forms of cancer affecting men across the globe. Due to late diagnosis of this disease, the mortality of this condition is very high. Conventional diagnostic methods like the direct rectal examination are uncomfortable and, in most cases, delayed, and further confirmation is required with biopsies and Gleason score. The most common biomarker approved by the FDA (United States Food and Drug Administration) is the prostate specific antigen (PSA) that is detected by conventional biochemical assays which require expensive reagents, is time-consuming and more often is only indicative and cannot be considered confirmative as it is susceptible to erroneous conclusions. The prostate health index employs quantification of PSA in its free and bound forms to enumerate the risk of prostate cancer and has found acceptance with clinicians though the methods used to determine these quantities are slow and require additional sensitivity. Search for novel biomarkers other than PSA has resulted in the identification of several promising candidates. However, their detection is still heavily dependent upon conventional biochemical assays that retain the challenges of being time-consuming, poorly sensitive and expensive. Development of specific sensor technologies integrating nanomaterials offers a viable alternative for rapid and sensitive determination of these non-PSA markers. This review summarizes the major advances in the development of sensors for diagnosis of prostate cancer using non-PSA markers. It also highlights some of the emerging paradigms in cancer diagnosis that may transform the diagnostic field in the context of prostate cancer.

10.
Mater Sci Eng C Mater Biol Appl ; 101: 254-263, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31029318

RESUMEN

Herein, we propose the synthesis of a microspherical imprinted hydrogel meant for the controlled release of a nucleotide, adenosine 5'-monophosphate (5'-AMP). Indeed, molecularly imprinted polymers-based (MIPs) materials possess remarkable selective molecular recognition ability that mimicks biological systems. MIPs have been used in numerous applications and hold great promise for the vectorization and/or controlled release of therapeutics and cosmetics. But, the conception of imprinted hydrogels-based drug delivery systems that are able to release polar bioactive compounds is explored weakly. Herein, the synthesis of imprinted hydrogel microbeads by inverse Pickering emulsion is detailed. Microspheres showed a large 5'-AMP loading capacity, around 300 mg·g-1, and a high binding capacity comparatively to the non-imprinted counterpart. The MIP had a thermo-responsive release behavior providing sustained release of adenosine 5'-monophosphate in an aqueous buffer simulating both human skin pH and temperature.


Asunto(s)
Adenosina Monofosfato/administración & dosificación , Emulsiones/química , Hidrogeles/síntesis química , Microesferas , Impresión Molecular , Reactivos de Enlaces Cruzados/química , Preparaciones de Acción Retardada , Liberación de Fármacos , Cinética , Nanopartículas/química , Nanopartículas/ultraestructura , Tamaño de la Partícula , Polimerizacion , Dióxido de Silicio/química , Solventes , Espectroscopía Infrarroja por Transformada de Fourier
11.
Biosens Bioelectron ; 22(9-10): 2145-50, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17097870

RESUMEN

The efficiency of a monomolecular film of (3-glycidoxypropyl) trimethoxysilane (GPTS) on a shear horizontal guided (Love) acoustic wave immunosensor to detect whole Escherichia coli (E. coli) bacteria is demonstrated. Direct anti-E. coli antibodies grafting onto the sensor surface did not lead to a significant bacteria immobilisation, partially attributed to the SiO2 sensor surface roughness. An innovative method has been set up to get around this difficulty and to detect whole bacteria. It consists in grafting goat anti-mouse antibodies (GAM) onto the sensor surface in a first step and introducing E. coli bacteria mixed with anti-E. coli antibodies onto the sensor in a second step. We describe the characteristics of such a technique like sample preparation time (lower than 30 min) and temperature improvements. A 37 degrees C experimental temperature led to the fastest bacteria binding kinetic, reducing the total analysis time. This method enables to keep the specificity of the antibody/antigen interaction and provides significant results in less than 1h. This leads to a detection threshold of 10(6) bacteria/ml in a 500 microl chamber.


Asunto(s)
Técnicas Biosensibles/instrumentación , Escherichia coli/aislamiento & purificación , Animales , Escherichia coli/inmunología , Inmunoensayo/instrumentación , Ratones
12.
Artículo en Inglés | MEDLINE | ID: mdl-15801317

RESUMEN

The objective of this paper is to couple theoretical and experimental results from microcantilevers and Love-wave acoustic devices in order to identify and separate mass loading effects from elastic effects. This is important in the perspective of sensing applications. For that, a thin-film polymer is deposited on both resonant platforms. It is demonstrated that microcantilevers are essentially mass sensitive. They allow one to determine the polymer layer thickness, which is validated by optical profilometry measurements. Then, taking into account this thickness, theoretical modeling and experimental measurements with Love-wave devices permit one to estimate an equivalent elastic shear modulus of the thin-film polymer at high frequency. Results are interesting if one is to fully understand and optimize (bio)chemical sensor responses.

13.
Langmuir ; 25(10): 5526-35, 2009 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-19378931

RESUMEN

Novel glycidyl-terminated organosilicon coupling agents possessing a trialkoxysilyl head group and a very long hydrocarbon chain (C22) were synthesized. Their ability to afford densely packed self-assembled monolayers (SAMs) grafted on silica-based surfaces was investigated. Transmission FT-IR spectra showed that the most regular films were obtained by using trichloracetic acid as the catalyst (10 M%). Atomic force microscopy (AFM) and optical ellipsometry were consistent with well ordered monolayers exhibiting a marked decrease of the surface roughness. Epifluorescence microscopy revealed that these SAMs possessed a better surface reactivity than monolayers obtained with the commercially available (3-glycidoxypropyl) trimethoxysilane (GPTS) upon grafting of a fluorescent probe (dansylcadaverin). Moreover, direct attachment of fluorescent antibodies (RAG-TRITC) through covalent binding led to higher mean fluorescence intensities, showing that these new SAMs possess high potential for the immobilization of biological molecules.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Membranas Artificiales , Silanos/química , Dióxido de Silicio/química , Cadaverina/análogos & derivados , Cadaverina/química , Catálisis , Colorantes Fluorescentes/química , Microscopía de Fuerza Atómica , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA