Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Neurosci ; 42(42): 7984-8001, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36109165

RESUMEN

Environmental factors and life experiences impinge on brain circuits triggering adaptive changes. Epigenetic regulators contribute to this neuroadaptation by enhancing or suppressing specific gene programs. The paralogous transcriptional coactivators and lysine acetyltransferases CREB binding protein (CBP) and p300 are involved in brain plasticity and stimulus-dependent transcription, but their specific roles in neuroadaptation are not fully understood. Here we investigated the impact of eliminating either CBP or p300 in excitatory neurons of the adult forebrain of mice from both sexes using inducible and cell type-restricted knock-out strains. The elimination of CBP, but not p300, reduced the expression and chromatin acetylation of plasticity genes, dampened activity-driven transcription, and caused memory deficits. The defects became more prominent in elderly mice and in paradigms that involved enduring changes in transcription, such as kindling and environmental enrichment, in which CBP loss interfered with the establishment of activity-induced transcriptional and epigenetic changes in response to stimulus or experience. These findings further strengthen the link between CBP deficiency in excitatory neurons and etiopathology in the nervous system.SIGNIFICANCE STATEMENT How environmental conditions and life experiences impinge on mature brain circuits to elicit adaptive responses that favor the survival of the organism remains an outstanding question in neurosciences. Epigenetic regulators are thought to contribute to neuroadaptation by initiating or enhancing adaptive gene programs. In this article, we examined the role of CREB binding protein (CBP) and p300, two paralogous transcriptional coactivators and histone acetyltransferases involved in cognitive processes and intellectual disability, in neuroadaptation in adult hippocampal circuits. Our experiments demonstrate that CBP, but not its paralog p300, plays a highly specific role in the epigenetic regulation of neuronal plasticity gene programs in response to stimulus and provide unprecedented insight into the molecular mechanisms underlying neuroadaptation.


Asunto(s)
Proteína de Unión a CREB , Epigénesis Genética , Masculino , Femenino , Ratones , Animales , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Histonas/metabolismo , Histona Acetiltransferasas/metabolismo , Acetilación , Factores de Transcripción/metabolismo , Cromatina/metabolismo , Hipocampo/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
2.
Proc Natl Acad Sci U S A ; 112(14): E1744-53, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25831496

RESUMEN

The Tcra enhancer (Eα) is essential for Tcra locus germ-line transcription and primary Vα-to-Jα recombination during thymocyte development. We found that Eα is inhibited late during thymocyte differentiation and in αß T lymphocytes, indicating that it is not required to drive transcription of rearranged Tcra genes. Eα inactivation resulted in the disruption of functional long-range enhancer-promoter interactions and was associated with loss of Eα-dependent histone modifications at promoter and enhancer regions, and reduced expression and recruitment of E2A to the Eα enhanceosome in T cells. Enhancer activity could not be recovered by T-cell activation, by forced expression of E2A or by the up-regulation of this and other transcription factors in the context of T helper differentiation. Our results argue that the major function of Eα is to coordinate the formation of a chromatin hub that drives Vα and Jα germ-line transcription and primary rearrangements in thymocytes and imply the existence of an Eα-independent mechanism to activate transcription of the rearranged Tcra locus in αß T cells.


Asunto(s)
Elementos de Facilitación Genéticos , Reordenamiento Génico de la Cadena alfa de los Receptores de Antígenos de los Linfocitos T , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Linfocitos T/citología , Animales , Diferenciación Celular , Separación Celular , Cromatina/metabolismo , Exones , Citometría de Flujo , Histonas/química , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Linfocitos T Colaboradores-Inductores/citología , Timocitos/citología , Transcripción Genética , Activación Transcripcional , Regulación hacia Arriba
3.
J Immunol ; 188(7): 3278-93, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22357628

RESUMEN

The Tcra enhancer (Eα) is essential for pre-TCR-mediated activation of germline transcription and V(D)J recombination. Eα is considered an archetypical enhanceosome that acts through the functional synergy and cooperative binding of multiple transcription factors. Based on dimethylsulfate genomic footprinting experiments, there has been a long-standing paradox regarding Eα activation in the absence of differences in enhancer occupancy. Our data provide the molecular mechanism of Eα activation and an explanation of this paradox. We found that germline transcriptional activation of Tcra is dependent on constant phospholipase Cγ, as well as calcineurin- and MAPK/ERK-mediated signaling, indicating that inducible transcription factors are crucially involved. NFAT, AP-1, and early growth response factor 1, together with CREB-binding protein/p300 coactivators, bind to Eα as part of an active enhanceosome assembled during pre-TCR signaling. We favor a scenario in which the binding of lymphoid-restricted and constitutive transcription factors to Eα prior to its activation forms a regulatory scaffold to recruit factors induced by pre-TCR signaling. Thus, the combinatorial assembly of tissue- and signal-specific transcription factors dictates the Eα function. This mechanism for enhancer activation may represent a general paradigm in tissue-restricted and stimulus-responsive gene regulation.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Transducción de Señal/inmunología , Animales , Secuencia de Bases , Calcineurina/fisiología , Línea Celular Tumoral , Células Cultivadas , Proteína 1 de la Respuesta de Crecimiento Precoz/fisiología , Células HEK293 , Humanos , Células Jurkat , Linfoma/patología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones SCID , Datos de Secuencia Molecular , Complejos Multiproteicos , Factores de Transcripción NFATC/fisiología , Fosfolipasa C gamma/fisiología , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Neoplasias del Timo/patología , Factor de Transcripción AP-1/fisiología , Factores de Transcripción p300-CBP/fisiología
4.
Nat Commun ; 15(1): 1781, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453932

RESUMEN

Kdm1a is a histone demethylase linked to intellectual disability with essential roles during gastrulation and the terminal differentiation of specialized cell types, including neurons, that remains highly expressed in the adult brain. To explore Kdm1a's function in adult neurons, we develop inducible and forebrain-restricted Kdm1a knockouts. By applying multi-omic transcriptome, epigenome and chromatin conformation data, combined with super-resolution microscopy, we find that Kdm1a elimination causes the neuronal activation of nonneuronal genes that are silenced by the polycomb repressor complex and interspersed with active genes. Functional assays demonstrate that the N-terminus of Kdm1a contains an intrinsically disordered region that is essential to segregate Kdm1a-repressed genes from the neighboring active chromatin environment. Finally, we show that the segregation of Kdm1a-target genes is weakened in neurons during natural aging, underscoring the role of Kdm1a safeguarding neuronal genome organization and gene silencing throughout life.


Asunto(s)
Cromatina , Histona Demetilasas , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Cromatina/genética , Neuronas/metabolismo
5.
Cells ; 11(24)2022 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-36552882

RESUMEN

The paralogous lysine acetyltransferases 3 (KAT3), CBP and P300, play critical roles during neurodevelopment, but their specific roles in neural precursors maintenance and differentiation remain obscure. In fact, it is still unclear whether these proteins are individually or jointly essential in processes such as proliferation of neural precursors, differentiation to specific neural cell types, or both. Here, we use subventricular zone-derived neurospheres as a potential ex vivo developmental model to analyze the proliferation and differentiation of neural stem cells (NSCs) lacking CBP, p300, or both proteins. The results showed that CBP and p300 are not individually essential for maintenance and proliferation of NSCs, although their combined ablation seriously compromised cell division. In turn, the absence of either of the two proteins compromised the differentiation of NSC into the neuronal and astrocytic lineages. Single-nucleus RNA sequencing analysis of neural cell cultures derived from CBP or p300 mutant neurospheres revealed divergent trajectories of neural differentiation upon CBP or p300 ablation, confirming unique functions and nonredundant roles in neural development. These findings contribute to a better understanding of the shared and individual roles of KAT3 proteins in neural differentiation and the etiology of neurodevelopmental disorders caused by their deficiency.


Asunto(s)
Células-Madre Neurales , Diferenciación Celular/fisiología , Células-Madre Neurales/metabolismo , Neurogénesis , Neuronas
6.
J Immunol ; 183(3): 1871-83, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19596981

RESUMEN

During thymocyte maturation, enhancers of genes encoding for TCRdelta (Tcrd) and TCRalpha (Tcra), Edelta(8), and Ealpha, work as a developmental switch controlling transition from Tcrd to Tcra activity at the Tcrad locus. Previous experiments revealed that an Ealpha fragment, Talpha1-Talpha2, which constitutes a well-characterized compact nucleoprotein structure led to premature activation of V(D)J recombination compared with that observed for the entire Ealpha or Talpha1-Talpha4. These experiments indicated that Talpha3-Talpha4 collaborates with factors bound to Talpha1-Talpha2 for the strict developmental regulation of Tcra rearrangement. The compact enhanceosome created on Talpha1-Talpha2 explained the molecular basis for requirement of intact Talpha2 TCF/LEF and ets sites for enhancer function. We have created a mutant version of Ealpha, EalphaMC, in which Edelta myb and runx sites have been substituted for Talpha2 runx and ets sites, that argues against the notion of a requirement for strict Ealpha enhanceosome structure for function. EalphaMC resulted in a very potent enhancer indicating that stereospecific interactions among proteins that form an Ealpha enhanceosome are rather flexible. Activation of V(D)J recombination by EalphaMC during thymocyte development resulted, however, to be premature and indistinguishable from that of Talpha1-Talpha2. These results indicate that Talpha3-Talpha4 itself is not sufficient to impart a developmental delay to a chimeric "early" enhancer, and indicate the need for functional collaboration between Talpha2 runx/ets sites binding proteins and proteins bound to Talpha3-Talpha4 for proper developmental activation. The possibility of assembly of distinct sets of proteins on Ealpha might represent a more flexible form of information processing during thymocyte development.


Asunto(s)
Elementos de Facilitación Genéticos , Reordenamiento Génico de la Cadena alfa de los Receptores de Antígenos de los Linfocitos T , Genes Codificadores de la Cadena alfa de los Receptores de Linfocito T/genética , Complejos Multiproteicos/genética , Nucleoproteínas/química , Multimerización de Proteína , Nucleoproteínas/metabolismo , Unión Proteica , Receptores de Antígenos de Linfocitos T alfa-beta , Timo/citología
7.
Nat Commun ; 11(1): 2588, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444594

RESUMEN

The lysine acetyltransferases type 3 (KAT3) family members CBP and p300 are important transcriptional co-activators, but their specific functions in adult post-mitotic neurons remain unclear. Here, we show that the combined elimination of both proteins in forebrain excitatory neurons of adult mice resulted in a rapidly progressing neurological phenotype associated with severe ataxia, dendritic retraction and reduced electrical activity. At the molecular level, we observed the downregulation of neuronal genes, as well as decreased H3K27 acetylation and pro-neural transcription factor binding at the promoters and enhancers of canonical neuronal genes. The combined deletion of CBP and p300 in hippocampal neurons resulted in the rapid loss of neuronal molecular identity without de- or transdifferentiation. Restoring CBP expression or lysine acetylation rescued neuronal-specific transcription in cultured neurons. Together, these experiments show that KAT3 proteins maintain the excitatory neuron identity through the regulation of histone acetylation at cell type-specific promoter and enhancer regions.


Asunto(s)
Encéfalo/citología , Lisina Acetiltransferasas/metabolismo , Neuronas/fisiología , Acetilación , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/fisiología , Elementos de Facilitación Genéticos , Epigenoma , Femenino , Regulación de la Expresión Génica , Lisina Acetiltransferasas/genética , Masculino , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Neuronas/citología , Fosfoproteínas/metabolismo , Factores de Transcripción p300-CBP/metabolismo
8.
Curr Opin Neurobiol ; 59: 1-8, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30856481

RESUMEN

The paralogous transcriptional co-activators CBP and p300 (aka KAT3A and KAT3B, respectively) contain a characteristic and promiscuous lysine acetyltransferase (KAT) domain and multiple independent protein-binding domains that enable them to interact with hundreds of proteins, possibly promoting the acetylation of thousands of target lysine residues. Both proteins play critical roles during the development of the nervous system and may also regulate stimuli-driven transcription and plasticity in postmitotic neurons. The multiplicity of functions, substrates, and molecular partners, together with the redundancy and singularity of the two KAT3 paralogs, define a complex cat's cradle of relationships. In this review, we discuss the role of the KAT3 proteins in neurons and integrate recent information regarding their function and mode of action.


Asunto(s)
Encéfalo , Acetilación , Animales , Factores de Transcripción p300-CBP
9.
Cell Death Differ ; 26(11): 2208-2222, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30850733

RESUMEN

The CREB-binding protein (CBP) exerts tight control of developmental processes. Here, we investigated the consequences of its selective ablation in newborn neurons. Mice in which CBP was eliminated during neuronal differentiation showed perinatal death and defective diaphragm innervation. Adult-born neurons also showed impaired growth and maturation after inducible and restricted CBP loss in dentate gyrus neuroprogenitors. Consistent with these in vivo findings, cultured neurons displayed impaired outgrowth, immature spines, and deficient activity-dependent synaptic remodeling after CBP ablation. These deficits coincided with broad transcriptional changes affecting genes involved in neuronal growth and plasticity. The affected gene set included many predicted targets of both CBP and the serum response factor (SRF), an activity-regulated transcription factor involved in structural plasticity. Notably, increasing SRF activity in a CBP-independent manner ameliorated the transcriptional, synaptic, and growth defects. These results underscore the relevance of CBP-SRF interactions during neuronal outgrowth and synaptic maturation, and demonstrate that CBP plays an essential role in supporting the gene program underlying the last steps of neuronal differentiation, both during development and in the adult brain.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Dendritas/metabolismo , Plasticidad Neuronal/fisiología , Factor de Respuesta Sérica/metabolismo , Sinapsis/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Proteína de Unión a CREB/genética , Giro Dentado/citología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Neurogénesis/genética , Neuronas/citología , Neuronas/patología , Transcriptoma
10.
Nat Neurosci ; 22(10): 1718-1730, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31501571

RESUMEN

Activity-driven transcription plays an important role in many brain processes, including those underlying memory and epilepsy. Here we combine genetic tagging of nuclei and ribosomes with RNA sequencing, chromatin immunoprecipitation with sequencing, assay for transposase-accessible chromatin using sequencing and Hi-C to investigate transcriptional and chromatin changes occurring in mouse hippocampal excitatory neurons at different time points after synchronous activation during seizure and sparse activation by novel context exploration. The transcriptional burst is associated with an increase in chromatin accessibility of activity-regulated genes and enhancers, de novo binding of activity-regulated transcription factors, augmented promoter-enhancer interactions and the formation of gene loops that bring together the transcription start site and transcription termination site of induced genes and may sustain the fast reloading of RNA polymerase complexes. Some chromatin occupancy changes and interactions, particularly those driven by AP1, remain long after neuronal activation and could underlie the changes in neuronal responsiveness and circuit connectivity observed in these neuroplasticity paradigms, perhaps thereby contributing to metaplasticity in the adult brain.


Asunto(s)
Epigenómica , Hipocampo/fisiología , Neuronas/fisiología , Animales , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Genes Inmediatos-Precoces/genética , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Regiones Promotoras Genéticas/genética , Convulsiones/genética , Convulsiones/fisiopatología , Estado Epiléptico/genética , Estado Epiléptico/fisiopatología , Factor de Transcripción AP-1/genética , Transcripción Genética/genética , Transcripción Genética/fisiología
11.
Mol Neurobiol ; 56(6): 4440-4454, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30334186

RESUMEN

The development of inhibitory circuits depends on the action of a network of transcription factors and epigenetic regulators that are critical for interneuron specification and differentiation. Although the identity of many of these transcription factors is well established, much less is known about the specific contribution of the chromatin-modifying enzymes that sculpt the interneuron epigenome. Here, we generated a mouse model in which the lysine acetyltransferase CBP is specifically removed from neural progenitors at the median ganglionic eminence (MGE), the structure where the most abundant types of cortical interneurons are born. Ablation of CBP interfered with the development of MGE-derived interneurons in both sexes, causing a reduction in the number of functionally mature interneurons in the adult forebrain. Genetic fate mapping experiments not only demonstrated that CBP ablation impacts on different interneuron classes, but also unveiled a compensatory increment of interneurons that escaped recombination and cushion the excitatory-inhibitory imbalance. Consistent with having a reduced number of interneurons, CBP-deficient mice exhibited a high incidence of spontaneous epileptic seizures, and alterations in brain rhythms and enhanced low gamma activity during status epilepticus. These perturbations led to abnormal behavior including hyperlocomotion, increased anxiety and cognitive impairments. Overall, our study demonstrates that CBP is essential for interneuron development and the proper functioning of inhibitory circuitry in vivo.


Asunto(s)
Diferenciación Celular/genética , Epigénesis Genética , Interneuronas/citología , Eminencia Media/citología , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Potenciales de Acción , Animales , Ansiedad/complicaciones , Ansiedad/fisiopatología , Conducta Animal , Mapeo Cromosómico , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/fisiopatología , Epilepsia/complicaciones , Epilepsia/patología , Epilepsia/fisiopatología , Femenino , Hipocampo/metabolismo , Interneuronas/metabolismo , Ácido Kaínico , Aprendizaje , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Parvalbúminas/metabolismo , Somatostatina/metabolismo , Factor Nuclear Tiroideo 1/metabolismo
12.
Curr Opin Chem Biol ; 45: 157-165, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29913328

RESUMEN

During development, chromatin changes contribute to establishing and maintaining the distinct gene-expression profiles of each individual cell type in a multicellular organism. This feat is especially remarkable in the human brain considering the sheer number of distinct cell types that make up this organ. This epigenetic programing is sensitive to environmental influences such as the presence of toxicants, diet, temperature, maternal behavior and many other external factors that can lead to sustained differences in neuronal gene expression. Here, we review a number of studies that demonstrate the existence of these environmental fingerprints in the neuronal epigenome and discuss the current challenges and prospects of environmental neuroepigenetics research.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/efectos adversos , Epigénesis Genética/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Cromatina/genética , Dieta , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/toxicidad , Femenino , Humanos , Exposición Materna/efectos adversos , Neuronas/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/genética
13.
Cell Rep ; 21(1): 47-59, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28978483

RESUMEN

During development, chromatin-modifying enzymes regulate both the timely establishment of cell-type-specific gene programs and the coordinated repression of alternative cell fates. To dissect the role of one such enzyme, the intellectual-disability-linked lysine demethylase 5C (Kdm5c), in the developing and adult brain, we conducted parallel behavioral, transcriptomic, and epigenomic studies in Kdm5c-null and forebrain-restricted inducible knockout mice. Together, genomic analyses and functional assays demonstrate that Kdm5c plays a critical role as a repressor responsible for the developmental silencing of germline genes during cellular differentiation and in fine-tuning activity-regulated enhancers during neuronal maturation. Although the importance of these functions declines after birth, Kdm5c retains an important genome surveillance role preventing the incorrect activation of non-neuronal and cryptic promoters in adult neurons.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Oxidorreductasas N-Desmetilantes/genética , Prosencéfalo/metabolismo , Transcripción Genética , Animales , Proteínas de Unión al ADN , Proteínas de Dominio Doblecortina , Elementos de Facilitación Genéticos , Femenino , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Histona Demetilasas , Histonas/genética , Histonas/metabolismo , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxidorreductasas N-Desmetilantes/deficiencia , Prosencéfalo/patología , Transducción de Señal
14.
Sci Rep ; 5: 17470, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26638868

RESUMEN

The stimulus-regulated transcription factor Serum Response Factor (SRF) plays an important role in diverse neurodevelopmental processes related to structural plasticity and motile functions, although its precise mechanism of action has not yet been established. To further define the role of SRF in neural development and distinguish between cell-autonomous and non cell-autonomous effects, we bidirectionally manipulated SRF activity through gene transduction assays that allow the visualization of individual neurons and their comparison with neighboring control cells. In vitro assays showed that SRF promotes survival and filopodia formation and is required for normal asymmetric neurite outgrowth, indicating that its activation favors dendrite enlargement versus branching. In turn, in vivo experiments demonstrated that SRF-dependent regulation of neuronal morphology has important consequences in the developing cortex and retina, affecting neuronal migration, dendritic and axonal arborization and cell positioning in these laminated tissues. Overall, our results show that the controlled and timely activation of SRF is essential for the coordinated growth of neuronal processes, suggesting that this event regulates the switch between neuronal growth and branching during developmental processes.


Asunto(s)
Movimiento Celular , Corteza Cerebral/citología , Red Nerviosa/metabolismo , Tejido Nervioso/metabolismo , Neuronas/metabolismo , Factor de Respuesta Sérica/metabolismo , Animales , Axones/metabolismo , Polaridad Celular , Células Cultivadas , Dendritas/metabolismo , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , Modelos Biológicos , Neuritas/metabolismo , Neuroprotección , Sinapsis/metabolismo , Vías Visuales
15.
Genet Res Int ; 2011: 970968, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22567371

RESUMEN

V(D)J recombination is the assembly of gene segments at the antigen receptor loci to generate antigen receptor diversity in T and B lymphocytes. This process is regulated, according to defined developmental programs, by the action of a single specific recombinase complex formed by the recombination antigen gene (RAG-1/2) proteins that are expressed in immature lymphocytes. V(D)J recombination is strictly controlled by RAG-1/2 accessibility to specific recombination signal sequences in chromatin at several levels: cellular lineage, temporal regulation, gene segment order, and allelic exclusion. DNA cleavage by RAG-1/2 is regulated by the chromatin structure, transcriptional elongation, and three-dimensional architecture and position of the antigen receptor loci in the nucleus. Cis-elements specifically direct transcription and V(D)J recombination at these loci through interactions with transacting factors that form molecular machines that mediate a sequence of structural events. These events open chromatin to activate transcriptional elongation and to permit the access of RAG-1/2 to their recombination signal sequences to drive the juxtaposition of the V, D, and J segments and the recombination reaction itself. This chapter summarizes the advances in this area and the important role of the structure and position of antigen receptor loci within the nucleus to control this process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA