Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(34): e2201541119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35943978

RESUMEN

Whereas pathogen-specific T and B cells are a primary focus of interest during infectious disease, we have used COVID-19 to ask whether their emergence comes at a cost of broader B cell and T cell repertoire disruption. We applied a genomic DNA-based approach to concurrently study the immunoglobulin-heavy (IGH) and T cell receptor (TCR) ß and δ chain loci of 95 individuals. Our approach detected anticipated repertoire focusing for the IGH repertoire, including expansions of clusters of related sequences temporally aligned with SARS-CoV-2-specific seroconversion, and enrichment of some shared SARS-CoV-2-associated sequences. No significant age-related or disease severity-related deficiencies were noted for the IGH repertoire. By contrast, whereas focusing occurred at the TCRß and TCRδ loci, including some TCRß sequence-sharing, disruptive repertoire narrowing was almost entirely limited to many patients aged older than 50 y. By temporarily reducing T cell diversity and by risking expansions of nonbeneficial T cells, these traits may constitute an age-related risk factor for COVID-19, including a vulnerability to new variants for which T cells may provide key protection.


Asunto(s)
Inmunidad Adaptativa , COVID-19 , Cadenas Pesadas de Inmunoglobulina , Receptores de Antígenos de Linfocitos T alfa-beta , Receptores de Antígenos de Linfocitos T , SARS-CoV-2 , Inmunidad Adaptativa/genética , Anciano , Linfocitos B/inmunología , COVID-19/genética , COVID-19/inmunología , Sitios Genéticos , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , SARS-CoV-2/inmunología , Seroconversión , Linfocitos T/inmunología
2.
Cytometry A ; 103(2): 117-126, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34811890

RESUMEN

Here we consider how high-content flow cytometric methodology at appropriate scale and throughput rapidly provided meaningful biological data in our recent studies of COVID-19, which we discuss in the context of other similar investigations. In our work, high-throughput flow cytometry was instrumental to identify a consensus immune signature in COVID-19 patients, and to investigate the impact of SARS-CoV-2 exposure on patients with either solid or hematological cancers. We provide here some examples of our 'holistic' approach, in which flow cytometry data generated by lymphocyte and myelomonocyte panels were integrated with other analytical metrics, including SARS-CoV-2-specific serum antibody titers, plasma cytokine/chemokine levels, and in-depth clinical annotation. We report how selective differences between T cell subsets were revealed by a newly described flow cytometric TDS assay to distinguish actively cycling T cells in the peripheral blood. By such approaches, our and others' high-content flow cytometry studies collectively identified overt abnormalities and subtle but critical changes that discriminate the immuno-signature of COVID-19 patients from those of healthy donors and patients with non-COVID respiratory infections. Thereby, these studies offered several meaningful biomarkers of COVID-19 severity that have the potential to improve the management of patients and of hospital resources. In sum, flow cytometry provides an important means for rapidly obtaining data that can guide clinical decision-making without requiring highly expensive, sophisticated equipment, and/or "-omics" capabilities. We consider how this approach might be further developed.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Citometría de Flujo , Citocinas , Subgrupos de Linfocitos T
3.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38069447

RESUMEN

The authors and Editorial Office were made aware of an error in a figure within the original publication [...].

4.
Lancet Oncol ; 22(6): 765-778, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33930323

RESUMEN

BACKGROUND: The efficacy and safety profiles of vaccines against SARS-CoV-2 in patients with cancer is unknown. We aimed to assess the safety and immunogenicity of the BNT162b2 (Pfizer-BioNTech) vaccine in patients with cancer. METHODS: For this prospective observational study, we recruited patients with cancer and healthy controls (mostly health-care workers) from three London hospitals between Dec 8, 2020, and Feb 18, 2021. Participants who were vaccinated between Dec 8 and Dec 29, 2020, received two 30 µg doses of BNT162b2 administered intramuscularly 21 days apart; patients vaccinated after this date received only one 30 µg dose with a planned follow-up boost at 12 weeks. Blood samples were taken before vaccination and at 3 weeks and 5 weeks after the first vaccination. Where possible, serial nasopharyngeal real-time RT-PCR (rRT-PCR) swab tests were done every 10 days or in cases of symptomatic COVID-19. The coprimary endpoints were seroconversion to SARS-CoV-2 spike (S) protein in patients with cancer following the first vaccination with the BNT162b2 vaccine and the effect of vaccine boosting after 21 days on seroconversion. All participants with available data were included in the safety and immunogenicity analyses. Ongoing follow-up is underway for further blood sampling after the delayed (12-week) vaccine boost. This study is registered with the NHS Health Research Authority and Health and Care Research Wales (REC ID 20/HRA/2031). FINDINGS: 151 patients with cancer (95 patients with solid cancer and 56 patients with haematological cancer) and 54 healthy controls were enrolled. For this interim data analysis of the safety and immunogenicity of vaccinated patients with cancer, samples and data obtained up to March 19, 2021, were analysed. After exclusion of 17 patients who had been exposed to SARS-CoV-2 (detected by either antibody seroconversion or a positive rRT-PCR COVID-19 swab test) from the immunogenicity analysis, the proportion of positive anti-S IgG titres at approximately 21 days following a single vaccine inoculum across the three cohorts were 32 (94%; 95% CI 81-98) of 34 healthy controls; 21 (38%; 26-51) of 56 patients with solid cancer, and eight (18%; 10-32) of 44 patients with haematological cancer. 16 healthy controls, 25 patients with solid cancer, and six patients with haematological cancer received a second dose on day 21. Of the patients with available blood samples 2 weeks following a 21-day vaccine boost, and excluding 17 participants with evidence of previous natural SARS-CoV-2 exposure, 18 (95%; 95% CI 75-99) of 19 patients with solid cancer, 12 (100%; 76-100) of 12 healthy controls, and three (60%; 23-88) of five patients with haematological cancers were seropositive, compared with ten (30%; 17-47) of 33, 18 (86%; 65-95) of 21, and four (11%; 4-25) of 36, respectively, who did not receive a boost. The vaccine was well tolerated; no toxicities were reported in 75 (54%) of 140 patients with cancer following the first dose of BNT162b2, and in 22 (71%) of 31 patients with cancer following the second dose. Similarly, no toxicities were reported in 15 (38%) of 40 healthy controls after the first dose and in five (31%) of 16 after the second dose. Injection-site pain within 7 days following the first dose was the most commonly reported local reaction (23 [35%] of 65 patients with cancer; 12 [48%] of 25 healthy controls). No vaccine-related deaths were reported. INTERPRETATION: In patients with cancer, one dose of the BNT162b2 vaccine yields poor efficacy. Immunogenicity increased significantly in patients with solid cancer within 2 weeks of a vaccine boost at day 21 after the first dose. These data support prioritisation of patients with cancer for an early (day 21) second dose of the BNT162b2 vaccine. FUNDING: King's College London, Cancer Research UK, Wellcome Trust, Rosetrees Trust, and Francis Crick Institute.


Asunto(s)
Vacunas contra la COVID-19/uso terapéutico , COVID-19/inmunología , Neoplasias/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Vacuna BNT162 , COVID-19/sangre , COVID-19/complicaciones , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Relación Dosis-Respuesta Inmunológica , Femenino , Humanos , Inmunogenicidad Vacunal/inmunología , Londres/epidemiología , Masculino , Persona de Mediana Edad , Neoplasias/sangre , Neoplasias/complicaciones , Neoplasias/virología , Estudios Prospectivos , SARS-CoV-2 , Gales
5.
J Biol Chem ; 295(52): 17973-17985, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33028632

RESUMEN

The molecular mechanisms of reduced frataxin (FXN) expression in Friedreich's ataxia (FRDA) are linked to epigenetic modification of the FXN locus caused by the disease-associated GAA expansion. Here, we identify that SUV4-20 histone methyltransferases, specifically SUV4-20 H1, play an important role in the regulation of FXN expression and represent a novel therapeutic target. Using a human FXN-GAA-Luciferase repeat expansion genomic DNA reporter model of FRDA, we screened the Structural Genomics Consortium epigenetic probe collection. We found that pharmacological inhibition of the SUV4-20 methyltransferases by the tool compound A-196 increased the expression of FXN by ∼1.5-fold in the reporter cell line. In several FRDA cell lines and patient-derived primary peripheral blood mononuclear cells, A-196 increased FXN expression by up to 2-fold, an effect not seen in WT cells. SUV4-20 inhibition was accompanied by a reduction in H4K20me2 and H4K20me3 and an increase in H4K20me1, but only modest (1.4-7.8%) perturbation in genome-wide expression was observed. Finally, based on the structural activity relationship and crystal structure of A-196, novel small molecule A-196 analogs were synthesized and shown to give a 20-fold increase in potency for increasing FXN expression. Overall, our results suggest that histone methylation is important in the regulation of FXN expression and highlight SUV4-20 H1 as a potential novel therapeutic target for FRDA.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Fibroblastos/patología , Ataxia de Friedreich/patología , Silenciador del Gen , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Proteínas de Unión a Hierro/metabolismo , Estudios de Casos y Controles , Fibroblastos/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Heterocromatina , Humanos , Proteínas de Unión a Hierro/antagonistas & inhibidores , Proteínas de Unión a Hierro/genética , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Frataxina
6.
Int J Mol Sci ; 19(11)2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30441765

RESUMEN

Upon binding with the chemokine CXCL12, the chemokine receptor CXCR4 has been shown to promote breast cancer progression. This process, however, can be affected by the expression of the atypical chemokine receptor ACKR3. Given ACKR3's ability to form heterodimers with CXCR4, we investigated how dual expression of both receptors differed from their lone expression in terms of their signalling pathways. We created single and double CXCR4 and/or ACKR3 Chinese hamster ovary (CHO) cell transfectants. ERK and Akt phosphorylation after CXCL12 stimulation was assessed and correlated with receptor internalization. Functional consequences in cell migration and proliferation were determined through wound healing assays and calcium flux. Initial experiments showed that CXCR4 and ACKR3 were upregulated in primary breast cancer and that CXCR4 and ACKR3 could form heterodimers in transfected CHO cells. This co-expression modified CXCR4's Akt activation after CXCL12's stimulation but not ERK phosphorylation (p < 0.05). To assess this signalling disparity, receptor internalization was assessed and it was observed that ACKR3 was recycled to the surface whilst CXCR4 was degraded (p < 0.01), a process that could be partially inhibited with a proteasome inhibitor (p < 0.01). Internalization was also assessed with the ACKR3 agonist VUF11207, which caused both CXCR4 and ACKR3 to be degraded after internalization (p < 0.05 and p < 0.001), highlighting its potential as a dual targeting drug. Interestingly, we observed that CXCR4 but not ACKR3, activated calcium flux after CXCL12 stimulation (p < 0.05) and its co-expression could increase cellular migration (p < 0.01). These findings suggest that both receptors can signal through ERK and Akt pathways but co-expression can alter their kinetics and internalization pathways.


Asunto(s)
Neoplasias de la Mama/metabolismo , Quimiocina CXCL12/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Animales , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Femenino , Humanos , Ratones , Receptores CXCR/genética
7.
Cancers (Basel) ; 13(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34298676

RESUMEN

Chemokine receptor CCR7 is implicated in the metastasis of breast cancer to the lymph nodes. Chemokine function is dependent upon their binding to both cell-surface heparan sulphate (HS) and to their specific receptors; thus, the role of HS in CCR7-mediated lymph node metastasis was investigated by creating a non-HS binding chemokine CCL21 (mut-CCL21). Mut-CCL21 (Δ103-134) induced leukocyte chemotaxis in diffusion gradients but did not stimulate trans-endothelial migration of PBMCs (p < 0.001) and 4T1-Luc cells (p < 0.01). Furthermore, the effect of heparin and HS on the chemotactic properties of wild-type (WT) and mut-CCL21 was examined. Interestingly, heparin and HS completely inhibit the chemotaxis mediated by WT-CCL21 at 250 and 500 µg/mL, whereas minimal effect was seen with mut-CCL21. This difference could potentially be attributed to reduced HS binding, as surface plasmon resonance spectroscopy showed that mut-CCL21 did not significantly bind HS compared to WT-CCL21. A murine model was used to assess the potential of mut-CCL21 to prevent lymph node metastasis in vivo. Mice were injected with 4T1-Luc cells in the mammary fat pad and treated daily for a week with 20 µg mut-CCL21. Mice were imaged weekly with IVIS and sacrificed on day 18. Luciferase expression was significantly reduced in lymph nodes from mice that had been treated with mut-CCL21 compared to the control (p = 0.0148), suggesting the potential to target chemokine binding to HS as a therapeutic option.

8.
Cancer Cell ; 39(2): 257-275.e6, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33476581

RESUMEN

Given the immune system's importance for cancer surveillance and treatment, we have investigated how it may be affected by SARS-CoV-2 infection of cancer patients. Across some heterogeneity in tumor type, stage, and treatment, virus-exposed solid cancer patients display a dominant impact of SARS-CoV-2, apparent from the resemblance of their immune signatures to those for COVID-19+ non-cancer patients. This is not the case for hematological malignancies, with virus-exposed patients collectively displaying heterogeneous humoral responses, an exhausted T cell phenotype and a high prevalence of prolonged virus shedding. Furthermore, while recovered solid cancer patients' immunophenotypes resemble those of non-virus-exposed cancer patients, recovered hematological cancer patients display distinct, lingering immunological legacies. Thus, while solid cancer patients, including those with advanced disease, seem no more at risk of SARS-CoV-2-associated immune dysregulation than the general population, hematological cancer patients show complex immunological consequences of SARS-CoV-2 exposure that might usefully inform their care.


Asunto(s)
COVID-19/inmunología , Neoplasias/inmunología , Neoplasias/virología , Síndrome Respiratorio Agudo Grave/inmunología , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/etiología , COVID-19/mortalidad , Femenino , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/mortalidad , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/virología , Humanos , Inmunofenotipificación , Masculino , Persona de Mediana Edad , Nasofaringe/virología , Neoplasias/mortalidad , Neoplasias/terapia , Síndrome Respiratorio Agudo Grave/etiología , Síndrome Respiratorio Agudo Grave/mortalidad , Síndrome Respiratorio Agudo Grave/virología , Linfocitos T/virología , Esparcimiento de Virus , Adulto Joven
9.
Nat Med ; 26(10): 1623-1635, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32807934

RESUMEN

Improved understanding and management of COVID-19, a potentially life-threatening disease, could greatly reduce the threat posed by its etiologic agent, SARS-CoV-2. Toward this end, we have identified a core peripheral blood immune signature across 63 hospital-treated patients with COVID-19 who were otherwise highly heterogeneous. The signature includes discrete changes in B and myelomonocytic cell composition, profoundly altered T cell phenotypes, selective cytokine/chemokine upregulation and SARS-CoV-2-specific antibodies. Some signature traits identify links with other settings of immunoprotection and immunopathology; others, including basophil and plasmacytoid dendritic cell depletion, correlate strongly with disease severity; while a third set of traits, including a triad of IP-10, interleukin-10 and interleukin-6, anticipate subsequent clinical progression. Hence, contingent upon independent validation in other COVID-19 cohorts, individual traits within this signature may collectively and individually guide treatment options; offer insights into COVID-19 pathogenesis; and aid early, risk-based patient stratification that is particularly beneficial in phasic diseases such as COVID-19.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Infecciones por Coronavirus/inmunología , Citocinas/inmunología , Células Dendríticas/inmunología , Neumonía Viral/inmunología , Linfocitos T/inmunología , Anciano , Subgrupos de Linfocitos B/inmunología , Basófilos/inmunología , Betacoronavirus , COVID-19 , Estudios de Casos y Controles , Ciclo Celular , Quimiocina CXCL10/inmunología , Quimiocinas/inmunología , Estudios de Cohortes , Infecciones por Coronavirus/sangre , Progresión de la Enfermedad , Femenino , Citometría de Flujo , Hospitalización , Humanos , Memoria Inmunológica , Inmunofenotipificación , Interleucina-10/inmunología , Interleucina-6/inmunología , Recuento de Leucocitos , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/sangre , Pronóstico , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T/inmunología , Regulación hacia Arriba
12.
Methods Enzymol ; 570: 309-33, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26921953

RESUMEN

Chemokines have a range of functions, including the activation and promotion of the vectorial migration of leukocytes. They mediate their biological effects by binding to their cognate G-protein-coupled receptors. Upon activation of the heterotrimeric G proteins, the Gα subunit exchanges GDP for GTP and dissociates from the receptor and from the Gßγ subunits, and both G-protein complexes go on to activate other downstream signaling events. In addition, chemokines interact with cell-surface glycosaminoglycans (GAGs). This potential for binding GAG components of proteoglycans on the cell surface or within the extracellular matrix allows the formation of the stable chemokine gradients necessary for leukocyte chemotaxis. In this chapter, we describe techniques for studying chemotaxis both in vivo and in vitro, as well as the creation of chemokine receptor-expressing cell lines, in order to examine this process in isolation.


Asunto(s)
Quimiocinas/metabolismo , Quimiotaxis/fisiología , Glicosaminoglicanos/metabolismo , Biología Molecular/métodos , Animales , Línea Celular , Movimiento Celular , Quimiotaxis de Leucocito , Femenino , Citometría de Flujo , Humanos , Ratones Endogámicos BALB C , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Transducción de Señal , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA