Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hippocampus ; 25(11): 1314-26, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25740272

RESUMEN

New dentate granule cells (GCs) are generated in the hippocampus throughout life. These adult-born neurons are required for spatial learning in the Morris water maze (MWM). In rats, spatial learning shapes the network by regulating their number and dendritic development. Here, we explored whether such modulatory effects exist in mice. New GCs were tagged using thymidine analogs or a GFP-expressing retrovirus. Animals were exposed to a reference memory protocol for 10-14 days (spaced training) at different times after newborn cells labeling. Cell proliferation, cell survival, cell death, neuronal phenotype, and dendritic and spine development were examined using immunohistochemistry. Surprisingly, spatial learning did not modify any of the parameters under scrutiny including cell number and dendritic morphology. These results suggest that although new GCs are required in mice for spatial learning in the MWM, they are, at least for the developmental intervals analyzed here, refractory to behavioral stimuli generated in the course of learning in the MWM.


Asunto(s)
Conducta Animal/fisiología , Fenómenos Fisiológicos Celulares/fisiología , Giro Dentado/citología , Aprendizaje por Laberinto/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
2.
J Nutr Biochem ; 117: 109334, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36965784

RESUMEN

The adaptive response to overfeeding is associated with profound modifications of gene expression in adipose tissue to support lipid storage and weight gain. The objective of this study was to assess in healthy lean men whether a supplementation with polyphenols could interact with these molecular adaptations. Abdominal subcutaneous adipose tissue biopsies were sampled from 42 subjects participating to an overfeeding protocol providing an excess of 50% of their total energy expenditure for 31 days, and who were supplemented with 2 g/day of grape polyphenols or a placebo. Gene expression profiling was performed by RNA sequencing. Overfeeding led to a modification of the expression of 163 and 352 genes in the placebo and polyphenol groups, respectively. The GO functions of these genes were mostly involved in lipid metabolism, followed by genes involved in adipose tissue remodeling and expansion. In response to overfeeding, 812 genes were differentially regulated between groups. Among them, a set of 41 genes were related to angiogenesis and were down-regulated in the polyphenol group. Immunohistochemistry targeting PECAM1, as endothelial cell marker, confirmed reduced angiogenesis in this group. Finally, quercetin and isorhamnetin, two polyphenol species enriched in the plasma of the volunteers submitted to the polyphenols, were found to inhibit human umbilical vein endothelial cells migration in vitro. Polyphenol supplementation do not prevent the regulation of genes related to lipid metabolism in human adipose tissue during overfeeding, but impact the angiogenesis pathways. This may potentially contribute to a protection against adipose tissue expansion during dynamic phase of weight gain.


Asunto(s)
Vitis , Masculino , Humanos , Células Endoteliales/metabolismo , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Aumento de Peso/fisiología , Suplementos Dietéticos , Polifenoles/farmacología , Polifenoles/metabolismo
3.
Front Nutr ; 9: 998044, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386937

RESUMEN

Introduction and aims: Dietary polyphenols have long been associated with health benefits, including the prevention of obesity and related chronic diseases. Overfeeding was shown to rapidly induce weight gain and fat mass, associated with mild insulin resistance in humans, and thus represents a suitable model of the metabolic complications resulting from obesity. We studied the effects of a polyphenol-rich grape extract supplementation on the plasma metabolome during an overfeeding intervention in adults, in two randomized parallel controlled clinical trials. Methods: Blood plasma samples from 40 normal weight to overweight male adults, submitted to a 31-day overfeeding (additional 50% of energy requirement by a high calorie-high fructose diet), given either 2 g/day grape polyphenol extract or a placebo at 0, 15, 21, and 31 days were analyzed (Lyon study). Samples from a similarly designed trial on females (20 subjects) were collected in parallel (Lausanne study). Nuclear magnetic resonance (NMR)-based metabolomics was conducted to characterize metabolome changes induced by overfeeding and associated effects from polyphenol supplementation. The clinical trials are registered under the numbers NCT02145780 and NCT02225457 at ClinicalTrials.gov. Results: Changes in plasma levels of many metabolic markers, including branched chain amino acids (BCAA), ketone bodies and glucose in both placebo as well as upon polyphenol intervention were identified in the Lyon study. Polyphenol supplementation counterbalanced levels of BCAA found to be induced by overfeeding. These results were further corroborated in the Lausanne female study. Conclusion: Administration of grape polyphenol-rich extract over 1 month period was associated with a protective metabolic effect against overfeeding in adults.

4.
Front Nutr ; 9: 854255, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35614978

RESUMEN

Two randomized placebo-controlled double-blind paralleled trials (42 men in Lyon, 19 women in Lausanne) were designed to test 2 g/day of a grape polyphenol extract during 31 days of high calorie-high fructose overfeeding. Hyperinsulinemic-euglycemic clamps and test meals with [1,1,1-13C3]-triolein were performed before and at the end of the intervention. Changes in body composition were assessed by dual-energy X-ray absorptiometry (DEXA). Fat volumes of the abdominal region and liver fat content were determined in men only, using 3D-magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) at 3T. Adipocyte's size was measured in subcutaneous fat biopsies. Bodyweight and fat mass increased during overfeeding, in men and in women. While whole body insulin sensitivity did not change, homeostasis model assessment of insulin resistance (HOMA-IR) and the hepatic insulin resistance index (HIR) increased during overfeeding. Liver fat increased in men. However, grape polyphenol supplementation did not modify the metabolic and anthropometric parameters or counteract the changes during overfeeding, neither in men nor in women. Polyphenol intake was associated with a reduction in adipocyte size in women femoral fat. Grape polyphenol supplementation did not counteract the moderated metabolic alterations induced by one month of high calorie-high fructose overfeeding in men and women. The clinical trials are registered under the numbers NCT02145780 and NCT02225457 at ClinicalTrials.gov and available at https://clinicaltrials.gov/ct2/show/NCT02145780 and https://clinicaltrials.gov/ct2/show/NCT02225457.

5.
Brain Behav ; 5(9): e00361, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26445700

RESUMEN

INTRODUCTION: The inhibition of the Histone Deacetylase 6 (HDAC6) increases tubulin acetylation, thus stimulating intracellular vesicle trafficking and brain-derived neurotrophic factor (BDNF) release, that is, cellular processes markedly reduced in Huntington's disease (HD). METHODS: We therefore tested that reducing HDAC6 levels by genetic manipulation would attenuate early cognitive and behavioral deficits in R6/1 mice, a mouse model which develops progressive HD-related phenotypes. RESULTS: In contrast to our initial hypothesis, the genetic deletion of HDAC6 did not reduce the weight loss or the deficits in cognitive abilities and nest-building behavior shown by R6/1 mice, and even worsened their social impairments, hypolocomotion in the Y-maze, and reduced ultrasonic vocalizations. CONCLUSIONS: These results weaken the validity of HDAC6 reduction as a possible therapeutic strategy for HD. The data are discussed in terms of additional cellular consequences and anatomical specificity of HDAC6 that could explain these unexpected effects.


Asunto(s)
Histona Desacetilasas/genética , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/genética , Acetilación , Animales , Conducta Animal/fisiología , Encéfalo/enzimología , Encéfalo/metabolismo , Encéfalo/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cognición/fisiología , Modelos Animales de Enfermedad , Eliminación de Gen , Histona Desacetilasa 6 , Histona Desacetilasas/metabolismo , Enfermedad de Huntington/terapia , Masculino , Ratones , Ratones Transgénicos , Actividad Motora/fisiología , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
6.
Neurobiol Aging ; 33(5): 1002.e17-27, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22014620

RESUMEN

Mimicking relevant behavioral features of the human pathology is one of the most important challenges for animal models of neurological disorders including Alzheimer disease (AD). Indeed, the most popular genetic AD mouse lines bearing mutations of the amyloid precursor protein (APP) and presenilin 1 genes (PS1), often fail to present robust cognitive deficits or show them only at very advanced ages. It is therefore crucial to identify AD-like behavioral alterations which may reliably reflect the early stages of the pathology, thus permitting tests of more efficient early therapeutic interventions. Here, we demonstrated the very early expression of noncognitive AD-like symptoms, i.e., deficits in social interest, interaction and communication, in APP and APP-PS1 transgenic mice. Conversely, other noncognitive behaviors (sensori-motor gating) as well as cognitive abilities (spontaneous alternation) were unaltered in AD transgenics. Our data suggest that social deficits precede other neuropsychiatric and cognitive AD-like symptoms and can be employed as early markers of AD pathology in genetic mouse models.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/psicología , Precursor de Proteína beta-Amiloide/genética , Conducta Animal/fisiología , Presenilina-1/genética , Conducta Social , Enfermedad de Alzheimer/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
7.
PLoS One ; 6(5): e19965, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21603578

RESUMEN

BACKGROUND: The R6/1 mouse line is one of the most widely employed models of Huntington Disease (HD), a complex syndrome characterized by motor and non-motor deficits. Surprisingly, its behavioral phenotype during the early phases of the pathology when the motor impairments are not manifest yet has been poorly investigated. It is also not clear whether the expression of HD-like symptoms at the pre-motor stage in this mouse model differs between the two sexes. METHODS: Male and female 12 weeks-old R6/1 mice and their wild-type littermates were tested on a battery of tests modeling some of the major neuropsychiatric non-motor symptoms of HD: alterations in social interest, social interaction and communication, as well as disturbances in prepulse inhibition of the acoustic startle response (PPI) and circadian patterns of activity. The lack of motor symptoms was confirmed during the entire experimental period by means of the tail test for clasping. RESULTS: R6/1 mice displayed marked alterations in all social behaviors which were mainly observed in males. Male R6/1 animals were also the only ones showing reduced body weight. Both male and female transgenic mice displayed mild alterations in the circadian activity patterns, but no deficits in PPI. CONCLUSIONS: These results demonstrate the validity of the R6/1 mouse in mimicking selected neuropsychiatric symptoms of HD, the social deficits being the clearest markers of the pre-motor phase of the pathology. Furthermore, our data suggest that male R6/1 mice are more suitable for future studies on the early stages of HD.


Asunto(s)
Enfermedad de Huntington/diagnóstico , Trastornos de la Destreza Motora , Conducta Social , Animales , Peso Corporal , Trastornos Cronobiológicos , Femenino , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Endogámicos , Ratones Transgénicos , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA