Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Anim Ecol ; 91(4): 845-857, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35114034

RESUMEN

The composition of founding populations plays an important role in colonisation dynamics and can influence population growth during early stages of biological invasion. Specifically, founding populations with small propagules (i.e. low number of founders) are vulnerable to the Allee effect and have reduced likelihood of establishment compared to those with large propagules. The founding sex ratio can also impact establishment via its influence on mating success and offspring production. Our goal was to test the effects of propagule size and sex ratio on offspring production and annual population growth following introductions of a non-native lizard species (Anolis sagrei). We manipulated propagule composition on nine small islands, then examined offspring production, population growth and survival rate of founders and their descendants encompassing three generations. By the third reproductive season, per capita offspring production was higher on islands seeded with a relatively large propagule size, but population growth was not associated with propagule size. Propagule sex ratio did not affect offspring production, but populations with a female-biased propagule had positive growth, whereas those with a male-biased propagule had negative growth in the first year. Populations were not affected by propagule sex ratio in subsequent years, possibly due to rapid shifts towards balanced (or slightly female biased) population sex ratios. Overall, we show that different components of population fitness have different responses to propagule size and sex ratio in ways that could affect early stages of biological invasion. Despite these effects, the short life span and high fecundity of A. sagrei likely helped small populations to overcome Allee effects and enabled all populations to successfully establish. Our rare experimental manipulation of propagule size and sex ratio can inform predictions of colonisation dynamics in response to different compositions of founding populations, which is critical in the context of population ecology and invasion dynamics.


Asunto(s)
Lagartos , Razón de Masculinidad , Animales , Femenino , Masculino , Dinámica Poblacional , Estaciones del Año
2.
Am Nat ; 197(4): 461-472, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33755533

RESUMEN

AbstractLife-history theory predicts that investment in reproduction should increase as future reproductive potential (i.e., residual reproductive value [RRV]) decreases. Researchers have thus intuitively used age as a proxy for RRV and assume that RRV decreases with age when interpreting age-specific investment. Yet age is an imperfect proxy for RRV and may even be a poor correlate in some systems. We used a 31-year study of the nesting ecology of painted turtles (Chrysemys picta) to assess how age and RRV compare in explaining variation in a risky investment behavior. We predicted that RRV would be a better predictor of risky investment than age because RRV accounts for variation in future reproductive potential across life. We found that RRV was high in early life, slowly decreased until midlife, and then steadily decreased to terminal reproduction. However, age predicted risky behavior better than RRV. This finding suggests that stronger correlates of age (e.g., size) may be more responsible for this behavior in turtles. This study highlights that researchers should not assume that age-specific investment is driven by RRV and that future work should quantify RRV to more directly test this key element of life-history theory.


Asunto(s)
Envejecimiento/fisiología , Tamaño de la Nidada , Comportamiento de Nidificación , Reproducción , Tortugas/fisiología , Animales , Femenino
3.
J Evol Biol ; 33(11): 1614-1624, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32897610

RESUMEN

The quantification of repeatability has enabled behavioural and evolutionary ecologists to assess the heritable potential of traits. For behavioural traits that vary across life, age-related variation should be accounted for to prevent biasing the microevolutionary estimate of interest. Moreover, to gain a mechanistic understanding of ontogenetic variation in behaviour, among- and within-individual variance should be quantified across life. We leveraged a 30-year study of painted turtles (Chrysemys picta) to assess how age contributes to variation in the repeatability of nesting behaviours. We found that four components of nesting behaviour were repeatable and that accounting for age increased the repeatability estimate for maternal choice of canopy cover over nests. We detected canalization (diminished within-individual variance with age) of canopy cover choice in a reduced data set despite no shift in repeatability. Additionally, random regression analysis revealed that females became more divergent from each other in their choice of canopy cover with age. Thus, properly modelling age-related variance should more precisely estimate heritable potential, and assessing among- and within-individual variance components in addition to repeatability will offer a more mechanistic understanding of behavioural variation across age.


Asunto(s)
Envejecimiento/psicología , Comportamiento de Nidificación , Tortugas , Animales , Ecosistema , Femenino , Illinois
4.
J Hered ; 110(4): 411-421, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30982894

RESUMEN

Fisherian sex-ratio theory predicts sexual species should have a balanced primary sex ratio. However, organisms with environmental sex determination (ESD) are particularly vulnerable to experiencing skewed sex ratios when environmental conditions vary. Theoretical work has modeled sex-ratio dynamics for animals with ESD with regard to 2 traits predicted to be responsive to sex-ratio selection: 1) maternal oviposition behavior and 2) sensitivity of embryonic sex determination to environmental conditions, and much research has since focused on how these traits influence offspring sex ratios. However, relatively few studies have provided estimates of univariate quantitative genetic parameters for these 2 traits, and the existence of phenotypic or genetic covariances among these traits has not been assessed. Here, we leverage studies on 3 species of reptiles (2 turtle species and a lizard) with temperature-dependent sex determination (TSD) to assess phenotypic covariances between measures of maternal oviposition behavior and thermal sensitivity of the sex-determining pathway. These studies quantified maternal behaviors that relate to nest temperature and sex ratio of offspring incubated under controlled conditions. A positive covariance between these traits would enhance the efficiency of sex-ratio selection when primary sex ratio is unbalanced. However, we detected no such covariance between measures of these categories of traits in the 3 study species. These results suggest that maternal oviposition behavior and thermal sensitivity of sex determination in embryos might evolve independently. Such information is critical to understand how animals with TSD will respond to rapidly changing environments that induce sex-ratio selection.


Asunto(s)
Evolución Biológica , Desarrollo Embrionario , Conducta Materna , Procesos de Determinación del Sexo , Razón de Masculinidad , Animales , Ambiente , Femenino , Masculino , Comportamiento de Nidificación , Carácter Cuantitativo Heredable , Temperatura , Tortugas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA