Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38788915

RESUMEN

BACKGROUND & AIMS: Rigorous donor preselection on microbiota level, strict anaerobic processing, and repeated fecal microbiota transplantation (FMT) administration were hypothesized to improve FMT induction of remission in ulcerative colitis (UC). METHODS: The RESTORE-UC trial was a multi-centric, double-blind, sham-controlled, randomized trial. Patients with moderate to severe UC (defined by total Mayo 4-10) were randomly allocated to receive 4 anaerobic-prepared allogenic or autologous donor FMTs. Allogenic donor material was selected after a rigorous screening based on microbial cell count, enterotype, and the abundance of specific genera. The primary endpoint was steroid-free clinical remission (total Mayo ≤2, no sub-score >1) at week 8. A pre-planned futility analysis was performed after 66% (n = 72) of intended inclusions (n = 108). Quantitative microbiome profiling (n = 44) was performed at weeks 0 and 8. RESULTS: In total, 72 patients were included, of which 66 received at least 1 FMT (allogenic FMT, n = 30 and autologous FMT, n = 36). At week 8, respectively, 3 and 5 patients reached the primary endpoint of steroid-free clinical remission (P = .72), indicating no treatment difference of at least 5% in favor of allogenic FMT. Hence, the study was stopped due to futility. Microbiome analysis showed numerically more enterotype transitions upon allogenic FMT compared with autologous FMT, and more transitions were observed when patients were treated with a different enterotype than their own at baseline (P = .01). Primary response was associated with lower total Mayo scores, lower bacterial cell counts, and higher Bacteroides 2 prevalence at baseline. CONCLUSION: The RESTORE-UC trial did not meet its primary endpoint of increased steroid-free clinical remission at week 8. Further research should additionally consider patient selection, sterilized sham-control, increased frequency, density, and viability of FMT prior to administration. CLINICALTRIALS: gov, Number: NCT03110289.

2.
Appl Environ Microbiol ; 90(6): e0032524, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38752748

RESUMEN

Saccharomyces boulardii has been a subject of growing interest due to its potential as a probiotic microorganism with applications in gastrointestinal health, but the molecular cause for its probiotic potency has remained elusive. The recent discovery that S. boulardii contains unique mutations causing high acetic acid accumulation and inhibition of bacterial growth provides a possible clue. The natural S. boulardii isolates Sb.P and Sb.A are homozygous for the recessive mutation whi2S270* and accumulate unusually high amounts of acetic acid, which strongly inhibit bacterial growth. However, the homozygous whi2S270* mutation also leads to acetic acid sensitivity and acid sensitivity in general. In the present study, we have constructed a new S. boulardii strain, derived from the widely therapeutically used CMCN I-745 strain (isolated from the pharmaceutical product Enterol), producing even higher levels of acetic acid while keeping the same tolerance toward low pH as the parent Enterol (ENT) strain. This newly engineered strain, named ENT3, has a homozygous deletion of ACH1 and strong overexpression of ALD4. It is also able to accumulate much higher acetic acid concentrations when growing on low glucose levels, in contrast to the ENT wild-type and Sb.P strains. Moreover, we show the antimicrobial capacity of ENT3 against gut pathogens in vitro and observed that higher acetic acid production might correlate with better persistence in the gut in healthy mice. These findings underscore the possible role of the unique acetic acid production and its potential for improvement of the probiotic action of S. boulardii.IMPORTANCESuperior variants of the probiotic yeast Saccharomyces boulardii produce high levels of acetic acid, which inhibit the growth of bacterial pathogens. However, these strains also show increased acid sensitivity, which can compromise the viability of the cells during their passage through the stomach. In this work, we have developed by genetic engineering a variant of Saccharomyces boulardii that produces even higher levels of acetic acid and does not show enhanced acid sensitivity. We also show that the S. boulardii yeasts with higher acetic acid production persist longer in the gut, in agreement with a previous work indicating competition between probiotic yeast and bacteria for residence in the gut.


Asunto(s)
Ácido Acético , Probióticos , Saccharomyces boulardii , Ácido Acético/metabolismo , Saccharomyces boulardii/genética , Animales , Ratones
3.
Gut ; 72(9): 1642-1650, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37339849

RESUMEN

BACKGROUND: Several randomised clinical trials (RCTs) performing faecal microbiota transplantation (FMT) for the management of inflammatory bowel disease (IBD), particularly for ulcerative colitis, have recently been published, but with major variations in study design. These include differences in administered dose, route and frequency of delivery, type of placebo and evaluated endpoints. Although the overall outcomes appear to be promising, they are highly dependent on both donor and recipient factors. OBJECTIVE: To develop concensus-based statements and recommendations for the evaluation, management and potential treatment of IBD using FMT in order to move towards standardised practices. DESIGN: An international panel of experts convened several times to generate evidence-based guidelines by performing a deep evaluation of currently available and/or published data. Twenty-five experts in IBD, immunology and microbiology collaborated in different working groups to provide statements on the following key issues related to FMT in IBD: (A) pathogenesis and rationale, (B) donor selection and biobanking, (C) FMT practices and (D) consideration of future studies and perspectives. Statements were evaluated and voted on by all members using an electronic Delphi process, culminating in a plenary consensus conference and generation of proposed guidelines. RESULTS AND CONCLUSIONS: Our group has provided specific statements and recommendations, based on best available evidence, with the end goal of providing guidance and general criteria required to promote FMT as a recognised strategy for the treatment of IBD.


Asunto(s)
Colitis Ulcerosa , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Trasplante de Microbiota Fecal/métodos , Ciudad de Roma , Enfermedades Inflamatorias del Intestino/terapia , Enfermedades Inflamatorias del Intestino/microbiología , Colitis Ulcerosa/terapia , Resultado del Tratamiento
4.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614212

RESUMEN

Short-chain fatty acids as well as their bacterial producers are of increasing interest in inflammatory bowel diseases. Although less studied compared to butyrate, acetate might also be of interest as it may be less toxic to epithelial cells, stimulate butyrate-producing bacteria by cross-feeding, and have anti-inflammatory and barrier-protective properties. Moreover, one of the causative factors of the probiotic potency of Saccharomyces cerevisae var. boulardii is thought to be its high acetate production. Therefore, the objective was to preclinically assess the effects of high acetate concentrations on inflammation and barrier integrity in organoid-based monolayer cultures from ulcerative colitis patients. Confluent organoid-derived colonic epithelial monolayers (n = 10) were exposed to basolateral inflammatory stimulation or control medium. After 24 h, high acetate or control medium was administered apically for an additional 48 h. Changes in TEER were measured after 48 h. Expression levels of barrier genes and inflammatory markers were determined by qPCR. Pro-inflammatory proteins in the supernatant were quantified using the MSD platform. Increased epithelial resistance was observed with high acetate administration in both inflamed and non-inflamed conditions, together with decreased expression levels of IL8 and TNFα and CLDN1. Upon high acetate administration to inflamed monolayers, upregulation of HIF1α, MUC2, and MKI67, and a decrease of the majority of pro-inflammatory cytokines was observed. In our patient-derived human epithelial cell culture model, a protective effect of high acetate administration on epithelial resistance, barrier gene expression, and inflammatory protein production was observed. These findings open up new possibilities for acetate-mediated management of barrier defects and inflammation in IBD.


Asunto(s)
Colitis Ulcerosa , Colitis , Humanos , Colitis Ulcerosa/metabolismo , Mucosa Intestinal/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Butiratos/farmacología , Acetatos/farmacología , Acetatos/metabolismo , Organoides/metabolismo , Colitis/metabolismo
5.
EBioMedicine ; 66: 103293, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33813134

RESUMEN

The gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in common: short-chain fatty acids (SCFAs). SCFAs (acetate, propionate and butyrate) are produced by bacterial fermentation in the gut and exert several effects on host metabolism and immune system. This review provides an overview of the current knowledge of these effects, with specific focus on energy metabolism, intestinal barrier, immune system, and disease activity in IBD. To conclude, more research is needed on the cross-feeding mechanisms in the gut microbiome, as well as on the therapeutic potential of SCFAs on different disease models. Also randomized controlled trials and prospective cohort studies should investigate the clinical impact of SCFA administration.


Asunto(s)
Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Inmunidad Adaptativa , Animales , Bacterias/metabolismo , Biomarcadores , Manejo de la Enfermedad , Susceptibilidad a Enfermedades/inmunología , Metabolismo Energético , Fermentación , Humanos , Inmunidad Innata , Inmunidad Mucosa , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/terapia , Redes y Vías Metabólicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA