Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Pediatr Gastroenterol Nutr ; 78(4): 836-845, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38344848

RESUMEN

OBJECTIVE: Analyze fecal and blood samples at point of diagnosis in IgE mediated cow's milk protein allergy (CMPA) and non-IgE mediated (NIM)-CMPA patients to look for potential new biomarkers. PATIENTS AND METHODS: Fourteen patients with IgE mediated CMPA and 13 with NIM-CMPA were recruited in three hospitals in the north of Spain, and were compared with 25 infants from a control group of the same age range. To characterize intestinal microbiota, 16S rDNA gene and internal transcribed spacer amplicons of bifidobacteria were sequenced with Illumina technology. Fatty acids were analyzed by gas chromatography, meanwhile intestinal inflammation markers were quantified by enzyme-linked immunosorbent assay and a multiplex system. Immunological analysis of blood was performed by flow cytometry. RESULTS: The fecal results obtained in the NIM-CMPA group stand out. Among them, a significant reduction in the abundance of Bifidobacteriaceae and Bifidobacterium sequences with respect to controls was observed. Bifidobacterial species were also different, highlighting the lower abundance of Bifidobacterium breve sequences. Fecal calprotectin levels were found to be significantly elevated in relation to IgE mediated patients. Also, a higher excretion of IL-10 and a lower excretion of IL-1ra and platelet derived growth factor-BB was found in NIM-CMPA patients. CONCLUSIONS: The differential fecal parameters found in NIM-CMPA patients could be useful in the diagnosis of NIM food allergy to CM proteins.


Asunto(s)
Hipersensibilidad a los Alimentos , Microbioma Gastrointestinal , Hipersensibilidad a la Leche , Lactante , Femenino , Animales , Humanos , Bovinos , Inmunoglobulina E , Hipersensibilidad a la Leche/diagnóstico , Proteínas de la Leche
2.
Eur J Pediatr ; 182(10): 4633-4645, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37555973

RESUMEN

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly worldwide, seriously endangering human health. Although SARS-CoV-2 had a lower impact on paediatric population, children with COVID-19 have been reported as suffering from gastrointestinal (GI) symptoms at a higher rate than adults. The aim of this work was to evaluate faeces as a source of potential biomarkers of severity in the paediatric population, with an emphasis on intestinal microbiota and faecal immune mediators, trying to identify possible dysbiosis and immune intestinal dysfunction associated with the risk of hospitalization. This study involved 19 patients with COVID-19 under 24 months of age hospitalized during the pandemic at 6 different hospitals in Spain, and it included a comparable age-matched healthy control group (n = 18). Patients and controls were stratified according to their age in two groups: newborns or young infants (from 0 to 3 months old) and toddlers (infants from 6 to 24 months old). To characterize microbial intestinal communities, sequencing with Illumina technology of total 16S rDNA amplicons and internal transcribed spacer (ITS) amplicons of bifidobacteria were used. Faecal calprotectin (FC) and a range of human cytokines, chemokines, and growth factors were measured in faecal samples using ELISA and a multiplex system. Significant reduction in the abundance of sequences belonging to the phylum Actinobacteria was found in those infants with COVID-19, as well as in the Bifidobacteriaceae family. A different pattern of bifidobacteria was observed in patients, mainly represented by lower percentages of Bifidobacterium breve, as compared with controls. In the group of hospitalized young infants, FC was almost absent compared to age-matched healthy controls. A lower prevalence in faecal excretion of immune factors in these infected patients was also observed. CONCLUSION:  Hospitalized infants with COVID-19 were depleted in some gut bacteria, such as bifidobacteria, in particular Bifidobacterium breve, which is crucial for the proper establishment of a functional intestinal microbiota, and important for the development of a competent immune system. Our results point to a possible immature immune system at intestine level in young infants infected by SARS-CoV2 requiring hospitalization. WHAT IS KNOWN: • Although SARS-CoV-2 had a lower impact on paediatric population, children with COVID-19 have been reported as suffering from gastrointestinal symptoms at a higher rate than adults. • Changes in microbial composition have been described in COVID-19 adult patients, although studies in children are limited. WHAT IS NEW: • The first evidence that hospitalized infants with COVID-19 during the pandemic had a depletion in bifidobacteria, particularly in Bifidobacterium breve, beneficial gut bacteria in infancy that are crucial for the proper establishment of a competent immune system. • In young infants (under 3 months of age) hospitalized with SARS-CoV2 infection, the aberrant bifidobacterial profile appears to overlap with a poor intestinal immune development as seen by calprotectin and the trend of immunological factors excreted in faeces.


Asunto(s)
Bifidobacterium , COVID-19 , Adulto , Lactante , Recién Nacido , Humanos , Preescolar , Bifidobacterium/genética , Disbiosis , ARN Viral , SARS-CoV-2 , Heces/microbiología , Complejo de Antígeno L1 de Leucocito
3.
Compr Rev Food Sci Food Saf ; 22(2): 971-1005, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36546415

RESUMEN

New types of protein sources will enter our diet in a near future, reinforcing the need for a straightforward in vitro (cell-based) screening model to test and predict the safety of these novel proteins, in particular their potential risk for de novo allergic sensitization. The Adverse Outcome Pathway (AOP) for allergen sensitization describes the current knowledge of key events underlying the complex cellular interactions that proceed allergic food sensitization. Currently, there is no consensus on the in vitro model to study the intestinal translocation of proteins as well as the epithelial activation, which comprise the first molecular initiation events (ME1-3) and the first key event of the AOP, respectively. As members of INFOGEST, we have highlighted several critical features that should be considered for any proposed in vitro model to study epithelial protein transport in the context of allergic sensitization. In addition, we defined which intestinal cell types are indispensable in a consensus model of the first steps of the AOP, and which cell types are optional or desired when there is the possibility to create a more complex cell model. A model of these first key aspects of the AOP can be used to study the gut epithelial translocation behavior of known hypo- and hyperallergens, juxtaposed to the transport behavior of novel proteins as a first screen for risk management of dietary proteins. Indeed, this disquisition forms a basis for the development of a future consensus model of the allergic sensitization cascade, comprising also the other key events (KE2-5).


Asunto(s)
Hipersensibilidad a los Alimentos , Humanos , Hipersensibilidad a los Alimentos/prevención & control , Alérgenos , Dieta , Alimentos , Absorción Intestinal
4.
J Appl Microbiol ; 133(1): 212-229, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35238463

RESUMEN

Traditionally, fermentation was used to preserve the shelf life of food. Currently, in addition to favouring food preservation, well standardized and controlled industrial processes are also aimed at improving the functional characteristics of the final product. In this regard, starter cultures have become an essential cornerstone of food production. The selection of robust microorganisms, well adapted to the food environment, has been followed by the development of microbial consortia that provide some functional characteristics, beyond their acidifying capacity, achieving safer, high-quality foods with improved nutritional and health-promoting properties. In addition to starters, adjunct cultures and probiotics, which normally do not have a relevant role in fermentation, are added to the food in order to provide some beneficial characteristics. This review focuses on highlighting the functional characteristics of food starters, as well as adjunct and probiotic cultures (mainly lactic acid bacteria and bifidobacteria), with a specific focus on the synthesis of metabolites for preservation and safety aspects (e.g. bacteriocins), organoleptic properties (e.g. exopolysaccharides), nutritional (e.g. vitamins) and health improvement (e.g. neuroactive molecules). Literature reporting the application of these functional cultures in the manufacture of foods, mainly those related to dairy production, such as cheeses and fermented milks, has also been updated.


Asunto(s)
Queso , Probióticos , Queso/microbiología , Fermentación , Microbiología de Alimentos , Conservación de Alimentos , Valor Nutritivo , Probióticos/análisis
5.
Artículo en Inglés | MEDLINE | ID: mdl-34398726

RESUMEN

A strictly anaerobic, resistant starch-degrading, bile-tolerant, autolytic strain, IPLA60002T, belonging to the family Ruminococcaceae, was isolated from a human bile sample of a liver donor without hepatobiliary disease. Cells were Gram-stain-positive cocci, and 16S rRNA gene and whole genome analyses showed that Ruminococcus bromii was the phylogenetically closest related species to the novel strain IPLA60002T, though with average nucleotide identity values below 90 %. Biochemically, the new isolate has metabolic features similar to those described previously for gut R. bromii strains, including the ability to degrade a range of different starches. The new isolate, however, produces lactate and shows distinct resistance to the presence of bile salts. Additionally, the novel bile isolate displays an autolytic phenotype after growing in different media. Strain IPLA60002T is phylogenetically distinct from other species within the genus Ruminococcus. Therefore, we propose on the basis of phylogenetic, genomic and metabolic data that the novel IPLA60002T strain isolated from human bile be given the name Ruminococcoides bili gen. nov., sp. nov., within the new proposed genus Ruminococcoides and the family Ruminococcaceae. Strain IPLA60002T (=DSM 110008T=LMG 31505T) is proposed as the type strain of Ruminococcoides bili.


Asunto(s)
Bilis/microbiología , Filogenia , Ruminococcus/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Humanos , ARN Ribosómico 16S/genética , Ruminococcus/aislamiento & purificación , Análisis de Secuencia de ADN
6.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498321

RESUMEN

The gut microbiota has emerged as a key factor in the pathogenesis of intestinal viruses, including enteroviruses, noroviruses and rotaviruses (RVs), where stimulatory and inhibitory effects on infectivity have been reported. With the aim of determining whether members of the microbiota interact with RVs during infection, a combination of anti-RV antibody labeling, fluorescence-activated cell sorting and 16S rRNA amplicon sequencing was used to characterize the interaction between specific bacteria and RV in stool samples of children suffering from diarrhea produced by G1P[8] RV. The genera Ruminococcus and Oxalobacter were identified as RV binders in stools, displaying enrichments between 4.8- and 5.4-fold compared to samples nonlabeled with anti-RV antibodies. In vitro binding of the G1P[8] Wa human RV strain to two Ruminococcus gauvreauii human isolates was confirmed by fluorescence microscopy. Analysis in R. gauvreauii with antibodies directed to several histo-blood group antigens (HBGAs) indicated that these bacteria express HBGA-like substances on their surfaces, which can be the target for RV binding. Furthermore, in vitro infection of the Wa strain in differentiated Caco-2 cells was significantly reduced by incubation with R. gauvreauii. These data, together with previous findings showing a negative correlation between Ruminococcus levels and antibody titers to RV in healthy individuals, suggest a pivotal interaction between this bacterial group and human RV. These results reveal likely mechanisms of how specific bacterial taxa of the intestinal microbiota could negatively affect RV infection and open new possibilities for antiviral strategies.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por Rotavirus/microbiología , Rotavirus/metabolismo , Ruminococcus/metabolismo , Proteínas Bacterianas/metabolismo , Células CACO-2 , Preescolar , Humanos , Intestinos/microbiología , Intestinos/virología , Unión Proteica , Rotavirus/patogenicidad , Infecciones por Rotavirus/virología , Ruminococcus/patogenicidad
7.
BMC Microbiol ; 17(1): 93, 2017 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-28415978

RESUMEN

BACKGROUND: Isoflavones are polyphenols with estrogenic activity found mainly in soy and soy-derived products that need to be metabolised in the intestine by the gut bacteria to be fully active. There is little knowledge about isoflavone bioconversion and equol production in the human intestine. In this work, we developed an in vitro anaerobic culture model based on faecal slurries to assess the impact of isoflavone supplementation on the overall intestinal bacterial composition changes and associated metabolic transformations. RESULTS: In the faecal anaerobic batch cultures of this study bioconversion of isoflavones into equol was possible, suggesting the presence of viable equol-producing bacterial taxa within the faeces of menopausal women with an equol producer phenotype. The application of high-throughput DNA sequencing of 16S rRNA gene amplicons revealed the composition of the faecal cultures to be modified by the addition of isoflavones, with enrichment of some bacterial gut members associated with the metabolism of phenolics and/or equol production, such as Collinsella, Faecalibacterium and members of the Clostridium clusters IV and XIVa. In addition, the concentration of short-chain fatty acids (SCFAs) detected in the isoflavone-containing faecal cultures was higher in those inoculated with faecal slurries from equol-producing women. CONCLUSIONS: This study constitutes the first step in the development of a faecal culturing system with isoflavones that would further allow the selection and isolation of intestinal bacterial types able to metabolize these compounds and produce equol in vitro. Although limited by the low number of faecal cultures analysed and the inter-individual bacterial diversity, the in vitro results obtained in this work tend to indicate that soy isoflavones might provide an alternative energy source for the increase of equol-producing taxa and enhancement of SCFAs production. SCFAs and equol are both considered pivotal bacterial metabolites in the triggering of intestinal health-related beneficial effects.


Asunto(s)
Bacterias/clasificación , Bacterias/metabolismo , Biota , Equol/metabolismo , Heces/microbiología , Isoflavonas/metabolismo , Fitoestrógenos/metabolismo , Anaerobiosis , Bacterias/genética , Bacterias/crecimiento & desarrollo , Biotransformación , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácidos Grasos Volátiles/metabolismo , Femenino , Humanos , Menopausia , Modelos Biológicos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
Food Microbiol ; 68: 129-136, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28800820

RESUMEN

"Suero Costeño" (SC) is a traditional soured cream elaborated from raw milk in the Northern-Caribbean coast of Colombia. The natural microbiota that characterizes this popular Colombian fermented milk is unknown, although several culturing studies have previously been attempted. In this work, the microbiota associated with SC from three manufacturers in two regions, "Planeta Rica" (Córdoba) and "Caucasia" (Antioquia), was analysed by means of culturing methods in combination with high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons. The bacterial ecosystem of SC samples was revealed to be composed of lactic acid bacteria belonging to the Streptococcaceae and Lactobacillaceae families; the proportions and genera varying among manufacturers and region of elaboration. Members of the Lactobacillus acidophilus group, Lactocococcus lactis, Streptococcus infantarius and Streptococcus salivarius characterized this artisanal product. In comparison with culturing, the use of molecular in deep culture-independent techniques provides a more realistic picture of the overall bacterial communities residing in SC. Besides the descriptive purpose, these approaches will facilitate a rational strategy to follow (culture media and growing conditions) for the isolation of indigenous strains that allow standardization in the manufacture of SC.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Técnicas de Tipificación Bacteriana/métodos , Biodiversidad , Productos Lácteos Cultivados/microbiología , Electroforesis en Gel de Gradiente Desnaturalizante/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Animales , Bacterias/clasificación , Bacterias/genética , Colombia , ADN Bacteriano/genética , Fermentación , Microbiología de Alimentos , ARN Ribosómico 16S/genética
9.
Appl Microbiol Biotechnol ; 99(10): 4343-53, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25661998

RESUMEN

Lactobacillus fermentum CECT 5716, isolated from human milk, has immunomodulatory, anti-inflammatory, and anti-infectious properties, as revealed by several in vitro and in vivo assays, which suggests a strong potential as a probiotic strain. In this work, some phenotypic properties of L. fermentum CECT 5716 were evaluated, and the genetic basis for the obtained results was searched for in the strain genome. L. fermentum CECT 5716 does not contain plasmids and showed neither bacteriocin nor biogenic amine biosynthesis ability but was able to produce organic acids, glutathione, riboflavin, and folates and to moderately stimulate the maturation of mouse dendritic cells. No prophages could be induced, and the strain was sensitive to all antibiotics proposed by European Food Safety Authority (EFSA) standards, while no transmissible genes potentially involved in antibiotic resistance were detected in its genome. Globally, there was an agreement between the phenotype properties of L. fermentum CECT 5716 and the genetic information contained in its genome.


Asunto(s)
Genoma Bacteriano , Limosilactobacillus fermentum/aislamiento & purificación , Leche Humana/microbiología , Probióticos/química , Animales , Antibacterianos/farmacología , Femenino , Ácido Fólico/metabolismo , Glutatión/metabolismo , Humanos , Limosilactobacillus fermentum/efectos de los fármacos , Limosilactobacillus fermentum/genética , Limosilactobacillus fermentum/metabolismo , Ratones , Ratones Endogámicos C57BL , Plásmidos/genética , Plásmidos/metabolismo , Probióticos/clasificación , Probióticos/aislamiento & purificación , Riboflavina/metabolismo
10.
Curr Genomics ; 15(4): 293-309, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25132799

RESUMEN

Understanding the Maxam-Gilbert and Sanger sequencing as the first generation, in recent years there has been an explosion of newly-developed sequencing strategies, which are usually referred to as next generation sequencing (NGS) techniques. NGS techniques have high-throughputs and produce thousands or even millions of sequences at the same time. These sequences allow for the accurate identification of microbial taxa, including uncultivable organisms and those present in small numbers. In specific applications, NGS provides a complete inventory of all microbial operons and genes present or being expressed under different study conditions. NGS techniques are revolutionizing the field of microbial ecology and have recently been used to examine several food ecosystems. After a short introduction to the most common NGS systems and platforms, this review addresses how NGS techniques have been employed in the study of food microbiota and food fermentations, and discusses their limits and perspectives. The most important findings are reviewed, including those made in the study of the microbiota of milk, fermented dairy products, and plant-, meat- and fish-derived fermented foods. The knowledge that can be gained on microbial diversity, population structure and population dynamics via the use of these technologies could be vital in improving the monitoring and manipulation of foods and fermented food products. They should also improve their safety.

11.
Rev Esp Patol ; 57(1): 48-52, 2024.
Artículo en Español | MEDLINE | ID: mdl-38246710

RESUMEN

INTRODUCTION AND OBJECTIVE: Melanoma is the leading cause of death from skin cancer in the world. Despite the advances in molecular diagnosis, the differential diagnosis between melanoma and benign melanocytic tumors relies on histopathology. However, not all of the criteria for the microscopy of a biopsy of a melanocytic tumor are applicable to all locations. PATIENTS: We highlight these difficulties in the presentation of 2cases of melanocytic tumors in unusual locations which were diagnostically challenging. RESULTS: After analyzing the relevant literature, the atypical histopathological characteristics of melanocytic tumors could be specified for unusual anatomical sites.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Biopsia , Diagnóstico Diferencial , Microscopía
12.
Nat Protoc ; 19(5): 1291-1310, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38267717

RESUMEN

Deep investigation of the microbiome of food-production and food-processing environments through whole-metagenome sequencing (WMS) can provide detailed information on the taxonomic composition and functional potential of the microbial communities that inhabit them, with huge potential benefits for environmental monitoring programs. However, certain technical challenges jeopardize the application of WMS technologies with this aim, with the most relevant one being the recovery of a sufficient amount of DNA from the frequently low-biomass samples collected from the equipment, tools and surfaces of food-processing plants. Here, we present the first complete workflow, with optimized DNA-purification methodology, to obtain high-quality WMS sequencing results from samples taken from food-production and food-processing environments and reconstruct metagenome assembled genomes (MAGs). The protocol can yield DNA loads >10 ng in >98% of samples and >500 ng in 57.1% of samples and allows the collection of, on average, 12.2 MAGs per sample (with up to 62 MAGs in a single sample) in ~1 week, including both laboratory and computational work. This markedly improves on results previously obtained in studies performing WMS of processing environments and using other protocols not specifically developed to sequence these types of sample, in which <2 MAGs per sample were obtained. The full protocol has been developed and applied in the framework of the European Union project MASTER (Microbiome applications for sustainable food systems through technologies and enterprise) in 114 food-processing facilities from different production sectors.


Asunto(s)
Microbiota , ADN/aislamiento & purificación , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Manipulación de Alimentos/métodos , Microbiología de Alimentos/métodos , Metagenoma , Metagenómica/métodos , Microbiota/genética , Análisis de Secuencia de ADN/métodos
13.
Microb Ecol ; 65(3): 763-72, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23397369

RESUMEN

Stomach mucosa biopsies and gastric juices samples of 12 healthy persons were analysed by culturing in selective- and non-selective-rich media. Microbial DNA from four mucosal samples was also amplified by nested PCR using universal bacterial primers, and the 16S rDNA amplicons pyrosequenced. The total number of cultivable microorganisms recovered from the samples ranged from 10(2) to 10(4) cfu/g or ml. The isolates were identified at the species level by PCR amplification and sequencing of the 16S rDNA. Isolates belonged mainly to four genera; Propionibacterium, Lactobacillus, Streptococcus and Staphylococcus. A total of 15,622 high-quality 16S rDNA sequence reads were obtained by pyrosequencing from the four mucosal samples. Sequence analysis grouped the reads into 59 families and 69 genera, revealing wide bacterial diversity. Considerable differences in the composition of the gastric microbiota were observed among the subjects, although in all samples the most abundant operational taxonomic units belonged to Streptococcus, Propionibacterium and Lactobacillus. Comparison of the stomach microbiota with that present in other parts of the human gastrointestinal tract revealed distinctive microbial communities. This is the first study in which a combination of culture and culture-independent techniques has been used to explore the bacterial diversity of the human stomach.


Asunto(s)
Bacterias/aislamiento & purificación , Biodiversidad , Recuento de Colonia Microbiana/métodos , Jugo Gástrico/microbiología , Análisis de Secuencia de ADN/métodos , Estómago/microbiología , Adulto , Anciano , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Ecosistema , Femenino , Humanos , Masculino , Metagenoma , Persona de Mediana Edad , Filogenia
14.
Food Microbiol ; 36(1): 103-11, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23764225

RESUMEN

Thermophilic lactic acid bacteria (LAB) species, such as Streptococcus thermophilus, Lactobacillus delbrueckii and Lactobacillus helveticus, enjoy worldwide economic importance as dairy starters. To assess the diversity of thermophilic bacteria in milk, milk samples were enriched in thermophilic organisms through a stepwise procedure which included pasteurization of milk at 63 °C for 30 min (PM samples) and pasteurization followed by incubation at 42 °C for 24 h (IPM samples). The microbial composition of these samples was analyzed by culture-dependent (at 42 °C) and culture-independent (PCR-DGGE and pyrosequencing of 16S rRNA gene amplicons) microbial techniques. The results were then compared to those obtained for their corresponding starting raw milk counterparts (RM samples). Twenty different species were scored by culturing among 352 isolates purified from the counting plates and identified by molecular methods. Mesophilic LAB species (Lactococcus lactis, Lactococcus garvieae) were dominant (87% of the isolates) among the RM samples. However, S. thermophilus and Lb. delbrueckii were found to be the dominant recoverable organisms in both PM and IPM samples. The DGGE profiles of RM and PM samples were found to be very similar; the most prominent bands belonging to Lactococcus, Leuconostoc and Streptococcus species. In contrast, just three DGGE bands were obtained for IPM samples, two of which were assigned to S. thermophilus. The pyrosequencing results scored 95 operational taxonomic units (OTUs) at 3% sequence divergence in an RM sample, while only 13 were encountered in two IPM samples. This technique identified Leuconostoc citreum as the dominant microorganism in the RM sample, while S. thermophilus constituted more than 98% of the reads in the IPM samples. The procedure followed in this study allowed to estimate the bacterial diversity in milk and afford a suitable strategy for the isolation of new thermophilic LAB strains, among which adequate starters might be selected.


Asunto(s)
Bacterias/aislamiento & purificación , Biodiversidad , Leche/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bovinos , Productos Lácteos Cultivados/microbiología , ADN Bacteriano/genética , Electroforesis en Gel de Gradiente Desnaturalizante , Contaminación de Alimentos/análisis , Manipulación de Alimentos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
Int J Food Microbiol ; 406: 110353, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-37591132

RESUMEN

Traditional fermented beverages have been consumed worldwide for centuries. Such is the case of "Chicha de siete semillas" which is originally from the province of Huanta, in Ayacucho, Peru. In this work we have analyzed the chemical composition and bacterial diversity of products manufactured from six producers, who have used different combinations of cereals, pseudocereals, legumes and aromatic herbs, although maize was present in all of them. The fermented beverages had a low pH, mainly due to the production of lactic acid, whereas ethanol was, in general, present in low concentrations. Most of the products were rich in GABA, the content of biogenic amines being very low, as corresponds to a product with a short maturation time (less than 4 days). A metataxonomic analysis revealed that Streptococcaceae and Leuconostocaceae families were dominant in the majority of the beverages, Streptococcus spp. and Leuconostoc spp. being the representative genera, respectively. The result was corroborated by culture-dependent techniques, since these were the most abundant genera isolated and identified in all samples, with Streptococcus macedonicus and Leuconostoc lactis as representative species. In lower proportions other isolates were identified as Lactobacillus delbrueckii, Lactiplantibacillus plantarum, Furfurilactobacillus rossiae, Weissella confusa and Enterococcus faecium. The genetic profile of 26 S. macedonicus isolates was determined by RAPD-PCR and REP-PCR, showing five different patterns distinguishable with the first technique. One representative strain from each genetic pattern was further characterized and used to ferment a maize-based matrix (with saccharose) in order to know their technological potential. All strains were able to ferment the beverage at 30 °C in a short time (about 6 h) reaching a pH below 4.5 and they remained viable after 24 h; the main organic acid contributing to the pH decrease was lactic acid. Therefore, S. macedonicus is a good candidate for being part of a putative starter culture, since it is a species well adapted to this cereal-based food niche.

16.
Probiotics Antimicrob Proteins ; 15(2): 300-311, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-34453308

RESUMEN

In this work, two Peruvian beverages "Masato de Yuca," typical of the Amazonian communities made from cassava (Manihot esculenta), and "Chicha de Siete Semillas," made from different cereal, pseudo-cereal, and legume flours, were explored for the isolation of lactic acid bacteria after obtaining the permission of local authorities following Nagoya protocol. From an initial number of 33 isolates, 16 strains with different RAPD- and REP-PCR genetic profiles were obtained. In Chicha, all strains were Lactiplantibacillus plantarum (formerly Lactobacillus plantarum), whereas in Masato, in addition to this species, Limosilactobacillus fermentum (formerly Lactobacillus fermentum), Pediococcus acidilactici, and Weissella confusa were also identified. Correlation analysis carried out with their carbohydrate fermentation patterns and enzymatic profiles allowed a clustering of the lactobacilli separated from the other genera. Finally, the 16 strains were submitted to a static in vitro digestion (INFOGEST model) that simulated the gastrointestinal transit. Besides, their ability to adhere to the human epithelial intestinal cell line HT29 was also determined. Following both procedures, the best probiotic candidate was Lac. plantarum Ch13, a robust strain able to better face the challenging conditions of the gastrointestinal tract and showing higher adhesion ability to the intestinal epithelium in comparison with the commercial probiotic strain 299v. In order to characterize its benefit for human health, this Ch13 strain will be deeply studied in further works.


Asunto(s)
Limosilactobacillus fermentum , Manihot , Probióticos , Humanos , Verduras , Perú , Técnica del ADN Polimorfo Amplificado Aleatorio , Lactobacillus , Bebidas Fermentadas , Fermentación
17.
Food Res Int ; 167: 112711, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087214

RESUMEN

Arabinoxylan (AX) and arabinoxylo-oligosaccharides (AXOS) derived therefrom are emergent prebiotics with promising health promoting properties, likely linked to its capacity to foster beneficial species in the human gut. Bifidobacteria appear to be one taxa that is frequently promoted following AX or AXOS consumption, and that is known to establish metabolic cross-feeding networks with other beneficial commensal species. Therefore, probiotic bifidobacteria with the capability to metabolize AX-derived prebiotics represent interesting candidates to develop novel probiotic and synbiotic combinations with AX-based prebiotics. In this work we have deepen into the metabolic capabilities of bifidobacteria related to AX and AXOS metabolization through a combination of in silico an in vitro tools. Both approaches revealed that Bifidobacterium longum and, particularly, B. longum subsp. longum, appears as the better equipped to metabolize complex AX substrates, although other related subspecies such as B. longum subsp. infantis, also hold some machinery related to AXOS metabolization. This correlates to the growth profiles exhibited by representative strains of both subspecies in AX or AXOS enriched media. Based on these results, we formulated a differential carbohydrate free medium (CFM) supplemented with a combination of AX and AXOS that enabled to recover a wide diversity of Bifidobacterium species from complex fecal samples, while allowing easy discrimination of AX metabolising strains by the appearance of a precipitation halo. This new media represent an appealing alternative to isolate novel probiotic bifidobacteria, rapidly discriminating their capacity to metabolize structurally complex AX-derived prebiotics. This can be convenient to assist formulation of novel functional foods and supplements, including bifidobacterial species with capacity to metabolize AX-derived prebiotic ingredients.


Asunto(s)
Bifidobacterium longum , Simbióticos , Humanos , Bifidobacterium longum/metabolismo , Bifidobacterium/metabolismo , Xilanos , Oligosacáridos/metabolismo , Prebióticos
18.
J Bacteriol ; 194(18): 5118-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22933752

RESUMEN

This work describes the draft genome sequence of Lactococcus garvieae IPLA 31405, isolated from a traditional Spanish cheese. The genome contains a lactose-galactose operon, a bacteriocin locus, two integrated phages, a transposon harboring an active tet(M) gene, and two theta-type plasmid replicons. Genes encoding virulence factors were not recorded.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Lactococcus/genética , Análisis de Secuencia de ADN , Bacteriocinas/metabolismo , Queso/microbiología , Elementos Transponibles de ADN , Lactococcus/efectos de los fármacos , Lactococcus/aislamiento & purificación , Lactococcus/metabolismo , Datos de Secuencia Molecular , Operón , Plásmidos , Profagos/genética , Resistencia a la Tetraciclina
19.
Appl Environ Microbiol ; 78(24): 8547-54, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23023749

RESUMEN

Biofilms are a common cause of food contamination with undesirable bacteria, such as pathogenic bacteria. Staphylococcus aureus is one of the major bacteria causing food-borne diseases in humans. A study designed to determine the presence of S. aureus on food contact surfaces in dairy, meat, and seafood environments and to identify coexisting microbiota has therefore been carried out. A total of 442 samples were collected, and the presence of S. aureus was confirmed in 6.1% of samples. Sixty-three S. aureus isolates were recovered and typed by random amplification of polymorphic DNA (RAPD). Profiles were clustered into four groups which were related to specific food environments. All isolates harbored some potential virulence factors such as enterotoxin production genes, biofilm formation-associated genes, antibiotic resistance, or lysogeny. PCR-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints of bacterial communities coexisting with S. aureus revealed the presence of bacteria either involved in food spoilage or of concern for food safety in all food environments. Food industry surfaces could thus be a reservoir for S. aureus forming complex communities with undesirable bacteria in multispecies biofilms. Uneven microbiological conditions were found in each food sector, which indicates the need to improve hygienic conditions in food processing facilities, particularly the removal of bacterial biofilms, to enhance the safety of food products.


Asunto(s)
Microbiología Ambiental , Industria de Alimentos , Staphylococcus aureus/aislamiento & purificación , Biopelículas/crecimiento & desarrollo , Análisis por Conglomerados , Farmacorresistencia Bacteriana , Genotipo , Humanos , Incidencia , Lisogenia , Tipificación Molecular , Técnica del ADN Polimorfo Amplificado Aleatorio , Staphylococcus aureus/clasificación , Staphylococcus aureus/genética , Staphylococcus aureus/fisiología , Factores de Virulencia/genética
20.
Appl Microbiol Biotechnol ; 94(5): 1279-87, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22526789

RESUMEN

Lactobacillus salivarius CECT 5713, isolated from human milk, has immunomodulatory, anti-inflammatory and antiinfectious properties, as revealed by several in vitro and in vivo assays, which suggests a strong potential as a probiotic strain. In this work, the relationships between several genetic features of L. salivarius CECT 5713 and the corresponding phenotypes were evaluated. Although it contains a plasmid-encoded bacteriocin cluster, no bacteriocin biosynthesis was observed, possibly due to a 4-bp deletion at the beginning of the histidine kinase determinant abpK. The genome of L. salivarius CECT 5713 harbours two apparently complete prophages of 39.6 and 48 kbp. Upon induction, the 48-kbp prophage became liberated from the bacterial genome, but no DNA replication took place, which resulted in lysis of the cultures but not in phage progeny generation. The strain was sensitive to most antibiotics tested and no transmissible genes potentially involved in antibiotic resistance were detected. Finally, the genome of L. salivarius CECT 5713 contained four ORFs potentially involved in human molecular mimetism. Among them, protein 1230 was considered of particular relevance because of its similarity with dendritic cell-related proteins. Subsequently, in vitro assays revealed the ability of L. salivarius CECT 5713 to stimulate the maturation of immature dendritic cells and to inhibit the in vitro infectivity of HIV-1.


Asunto(s)
Lactobacillus/genética , Lactobacillus/fisiología , Leche Humana/microbiología , Antibacterianos/farmacología , Bacteriocinas/biosíntesis , Bacteriocinas/genética , Bacteriólisis , Farmacorresistencia Bacteriana , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Fenotipo , Plásmidos , Profagos/genética , Profagos/crecimiento & desarrollo , Activación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA