Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 324(4): H484-H493, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36800507

RESUMEN

Mitochondrial DNA (mtDNA) haplotype regulates mitochondrial structure/function and reactive oxygen species in aortocaval fistula (ACF) in mice. Here, we unravel the mitochondrial haplotype effects on cardiomyocyte mitochondrial ultrastructure and transcriptome response to ACF in vivo. Phenotypic responses and quantitative transmission electron microscopy (TEM) and RNA sequence at 3 days were determined after sham surgery or ACF in vivo in cardiomyocytes from wild-type (WT) C57BL/6J (C57n:C57mt) and C3H/HeN (C3Hn:C3Hmt) and mitochondrial nuclear exchange mice (C57n:C3Hmt or C3Hn:C57mt). Quantitative TEM of cardiomyocyte mitochondria C3HWT hearts have more electron-dense compact mitochondrial cristae compared with C57WT. In response to ACF, mitochondrial area and cristae integrity are normal in C3HWT; however, there is mitochondrial swelling, cristae lysis, and disorganization in both C57WT and MNX hearts. Tissue analysis shows that C3HWT hearts have increased autophagy, antioxidant, and glucose fatty acid oxidation-related genes compared with C57WT. Comparative transcriptomic analysis of cardiomyocytes from ACF was dependent upon mtDNA haplotype. C57mtDNA haplotype was associated with increased inflammatory/protein synthesis pathways and downregulation of bioenergetic pathways, whereas C3HmtDNA showed upregulation of autophagy genes. In conclusion, ACF in vivo shows a protective response of C3Hmt haplotype that is in large part driven by mitochondrial nuclear genome interaction.NEW & NOTEWORTHY The results of this study support the effects of mtDNA haplotype on nuclear gene expression in cardiomyocytes. Currently, there is no acceptable therapy for volume overload due to mitral regurgitation. The findings of this study could suggest that mtDNA haplotype activates different pathways after ACF warrants further investigations on human population of heart disease from different ancestry backgrounds.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Ratones , Animales , Humanos , Miocitos Cardíacos/metabolismo , Haplotipos , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , ADN Mitocondrial/genética
2.
Hum Mol Genet ; 29(17): 2855-2871, 2020 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-32766788

RESUMEN

DOCK3 is a member of the DOCK family of guanine nucleotide exchange factors that regulate cell migration, fusion and viability. Previously, we identified a dysregulated miR-486/DOCK3 signaling cascade in dystrophin-deficient muscle, which resulted in the overexpression of DOCK3; however, little is known about the role of DOCK3 in muscle. Here, we characterize the functional role of DOCK3 in normal and dystrophic skeletal muscle. Utilizing Dock3 global knockout (Dock3 KO) mice, we found that the haploinsufficiency of Dock3 in Duchenne muscular dystrophy mice improved dystrophic muscle pathologies; however, complete loss of Dock3 worsened muscle function. Adult Dock3 KO mice have impaired muscle function and Dock3 KO myoblasts are defective for myogenic differentiation. Transcriptomic analyses of Dock3 KO muscles reveal a decrease in myogenic factors and pathways involved in muscle differentiation. These studies identify DOCK3 as a novel modulator of muscle health and may yield therapeutic targets for treating dystrophic muscle symptoms.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Desarrollo de Músculos/genética , Músculo Esquelético/crecimiento & desarrollo , Distrofia Muscular de Duchenne/genética , Proteínas del Tejido Nervioso/genética , Animales , Diferenciación Celular/genética , Movimiento Celular/genética , Supervivencia Celular/genética , Humanos , Ratones , Ratones Noqueados , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Mioblastos/metabolismo , Transcriptoma/genética
3.
Clin Immunol ; 244: 109130, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36189576

RESUMEN

Here, we report a case of atopic dermatitis (AD) in a patient who received biweekly doses of dupilumab, an antibody against the IL-4 receptor α chain (IL-4Rα). Single cell RNA-sequencing showed that naïve B cells expressed the highest levels of IL4R compared to other B cell subpopulations. Compared to controls, the dupilumab-treated patient exhibited diminished percentages of IL4R+IGHD+ naïve B cells and down-regulation of IL4R, FCER2 (CD23), and IGHD. Dupilumab treatment resulted in upregulation of genes associated with apoptosis and inhibition of B cell receptor signaling and down-regulation of class-switch and memory B cell development genes. The dupilumab-treated patient exhibited a rapid decline in COVID-19 anti-spike and anti-receptor binding domain antibodies between 4 and 8 and 11 months post COVID-19 vaccination. Our data suggest that intact and persistent IL-4 signaling is necessary for maintaining robust survival and development of naïve B cells, and maintaining a long term vaccine response.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Receptores de Interleucina-4 , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Vacunas contra la COVID-19 , Humanos , Interleucina-4 , ARN , Receptores de Antígenos de Linfocitos B
4.
Arch Toxicol ; 95(1): 179-193, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979061

RESUMEN

Accidental bromine spills are common and its large industrial stores risk potential terrorist attacks. The mechanisms of bromine toxicity and effective therapeutic strategies are unknown. Our studies demonstrate that inhaled bromine causes deleterious cardiac manifestations. In this manuscript we describe mechanisms of delayed cardiac effects in the survivors of a single bromine exposure. Rats were exposed to bromine (600 ppm for 45 min) and the survivors were sacrificed at 14 or 28 days. Echocardiography, hemodynamic analysis, histology, transmission electron microscopy (TEM) and biochemical analysis of cardiac tissue were performed to assess functional, structural and molecular effects. Increases in right ventricular (RV) and left ventricular (LV) end-diastolic pressure and LV end-diastolic wall stress with increased LV fibrosis were observed. TEM images demonstrated myofibrillar loss, cytoskeletal breakdown and mitochondrial damage at both time points. Increases in cardiac troponin I (cTnI) and N-terminal pro brain natriuretic peptide (NT-proBNP) reflected myofibrillar damage and increased LV wall stress. LV shortening decreased as a function of increasing LV end-systolic wall stress and was accompanied by increased sarcoendoplasmic reticulum calcium ATPase (SERCA) inactivation and a striking dephosphorylation of phospholamban. NADPH oxidase 2 and protein phosphatase 1 were also increased. Increased circulating eosinophils and myocardial 4-hydroxynonenal content suggested increased oxidative stress as a key contributing factor to these effects. Thus, a continuous oxidative stress-induced chronic myocardial damage along with phospholamban dephosphorylation are critical for bromine-induced chronic cardiac dysfunction. These findings in our preclinical model will educate clinicians and public health personnel and provide important endpoints to evaluate therapies.


Asunto(s)
Bromo , Cardiomegalia/fisiopatología , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Derecha/fisiopatología , Función Ventricular Izquierda , Función Ventricular Derecha , Remodelación Ventricular , Animales , Proteínas de Unión al Calcio/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiotoxicidad , Diástole , Modelos Animales de Enfermedad , Fibrosis , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Miocardio/metabolismo , Miocardio/ultraestructura , NADPH Oxidasa 2/metabolismo , Péptido Natriurético Encefálico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Fosforilación , Proteína Fosfatasa 1/metabolismo , Ratas Sprague-Dawley , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sístole , Factores de Tiempo , Troponina I/metabolismo , Disfunción Ventricular Izquierda/inducido químicamente , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Derecha/inducido químicamente , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/patología
5.
FASEB J ; 33(7): 7929-7941, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30917010

RESUMEN

During hypoxia, a cellular adaptive response activates hypoxia-inducible factors (HIFs; HIF-1 and HIF-2) that respond to low tissue-oxygen levels and induce the expression of a number of genes that promote angiogenesis, energy metabolism, and cell survival. HIF-1 and HIF-2 regulate endothelial cell (EC) adaptation by activating gene-signaling cascades that promote endothelial migration, growth, and differentiation. An HIF-1 to HIF-2 transition or switch governs this process from acute to prolonged hypoxia. In the present study, we evaluated the mechanisms governing the HIF switch in 10 different primary human ECs from different vascular beds during the early stages of hypoxia. The studies demonstrate that the switch from HIF-1 to HIF-2 constitutes a universal mechanism of cellular adaptation to hypoxic stress and that HIF1A and HIF2A mRNA stability differences contribute to HIF switch. Furthermore, using 4 genome-wide mRNA expression arrays of HUVECs during normoxia and after 2, 8, and 16 h of hypoxia, we show using bioinformatics analyses that, although a number of genes appeared to be regulated exclusively by HIF-1 or HIF-2, the largest number of genes appeared to be regulated by both.-Bartoszewski, R., Moszynska, A., Serocki, M., Cabaj, A., Polten, A., Ochocka, R., Dell'Italia, L., Bartoszewska, S., Króliczewski, J., Dabrowski, M., Collawn, J. F. Primary endothelial cell-specific regulation of hypoxia-inducible factor (HIF)-1 and HIF-2 and their target gene expression profiles during hypoxia.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipoxia de la Célula/genética , Células Endoteliales/metabolismo , Regulación de la Expresión Génica/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Adaptación Fisiológica/genética , Aorta/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Semivida , Células Endoteliales de la Vena Umbilical Humana , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Arteria Ilíaca/citología , Especificidad de Órganos , Cultivo Primario de Células , Arteria Pulmonar/citología , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Piel/irrigación sanguínea , Útero/irrigación sanguínea
6.
Circ Res ; 122(2): 319-336, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29348253

RESUMEN

Chymase is the most efficient Ang II (angiotensin II)-forming enzyme in the human body and has been implicated in a wide variety of human diseases that also implicate its many other protease actions. Largely thought to be the product of mast cells, the identification of other cellular sources including cardiac fibroblasts and vascular endothelial cells demonstrates a more widely dispersed production and distribution system in various tissues. Furthermore, newly emerging evidence for its intracellular presence in cardiomyocytes and smooth muscle cells opens an entirely new compartment of chymase-mediated actions that were previously thought to be limited to the extracellular space. This review illustrates how these multiple chymase-mediated mechanisms of action can explain the residual risk in clinical trials of cardiovascular disease using conventional renin-angiotensin system blockade.


Asunto(s)
Enfermedades Cardiovasculares/enzimología , Quimasas/antagonistas & inhibidores , Quimasas/fisiología , Remodelación Vascular/fisiología , Enfermedad Aguda , Angiotensina II/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/patología , Enfermedad Crónica , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Mastocitos/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/fisiología , Remodelación Vascular/efectos de los fármacos
7.
J Mol Cell Cardiol ; 134: 29-39, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31252040

RESUMEN

BACKGROUND: Inflammatory serine proteases (ISPs) play an important role in cardiac repair after injury through hydrolysis of dead cells and extracellular matrix (ECM) debris. Evidence also suggests an important role of ISPs in the coordination of the inflammatory response. However, the effect of ISPs on inflammation is obfuscated by the confounding factors associated with cell death and inflammatory cell infiltration induced after cardiac injury. This study investigated whether neutrophil-derived cathepsin G (Cat.G) influences inflammation and remodeling in the absence of prior cardiac injury and cell death. METHODS AND RESULTS: Intracardiac catheter delivery of Cat.G (1 mg/kg) in rats induced significant left ventricular (LV) dilatation and cardiac contractile dysfunction at day 5, but not at day 2, post-delivery compared to vehicle-treated animals. Cat.G delivery also significantly increased matrix metalloprotease activity and collagen and fibronectin degradation at day 5 compared to vehicle-treated rats and these changes were associated with increased death signaling pathways and myocyte apoptosis. Mechanistic analysis shows that Cat.G-treatment induced potent chemotactic activity in hearts at day 2 and 5 post-delivery, characterized by processing and activation of interleukin (IL)-1ß and IL-18, stimulation of inflammatory signaling pathways and accumulation of myeloid cells when compared to vehicle-treated rats. Cat.G-induced processing of IL-1ß and IL-18 was independent of the canonical NLRP-3 inflammasome pathway and treatment of isolated cardiomyocytes with inhibitors of NLRP-3 or caspase-1 failed to reduce Cat.G-induced cardiomyocyte death. Notably, rats treated with IL-1 receptor antagonist (IL-1Ra) show reduced inflammation and improved cardiac remodeling and function following Cat.G delivery. CONCLUSIONS: Cat.G exerts potent chemoattractant and pro-inflammatory effects in non-stressed or injured heart in part through processing and activation of IL-1 family cytokines, subsequently leading to adverse cardiac remodeling and function. Thus, targeting ISPs could be a novel therapeutic strategy to reduce cardiac inflammation and improve cardiac remodeling and function after injury or stress.


Asunto(s)
Remodelación Atrial/efectos de los fármacos , Catéteres Cardíacos , Catepsina G/administración & dosificación , Inflamasomas/efectos de los fármacos , Inflamación/inducido químicamente , Remodelación Ventricular/efectos de los fármacos , Animales , Cateterismo Cardíaco , Catepsina G/efectos adversos , Catepsina G/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Inflamación/patología , Masculino , Neutrófilos/enzimología , Neutrófilos/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
8.
Am J Physiol Heart Circ Physiol ; 316(1): H212-H223, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30379573

RESUMEN

Halogens are widely used, highly toxic chemicals that pose a potential threat to humans because of their abundance. Halogens such as bromine (Br2) cause severe pulmonary and systemic injuries; however, the mechanisms of their toxicity are largely unknown. Here, we demonstrated that Br2 and reactive brominated species produced in the lung and released in blood reach the heart and cause acute cardiac ultrastructural damage and dysfunction in rats. Br2-induced cardiac damage was demonstrated by acute (3-24 h) increases in circulating troponin I, heart-type fatty acid-binding protein, and NH2-terminal pro-brain natriuretic peptide. Transmission electron microscopy demonstrated acute (3-24 h) cardiac contraction band necrosis, disruption of z-disks, and mitochondrial swelling and disorganization. Echocardiography and hemodynamic analysis revealed left ventricular (LV) systolic and diastolic dysfunction at 7 days. Plasma and LV tissue had increased levels of brominated fatty acids. 2-Bromohexadecanal (Br-HDA) injected into the LV cavity of a normal rat caused acute LV enlargement with extensive disruption of the sarcomeric architecture and mitochondrial damage. There was extensive infiltration of neutrophils and increased myeloperoxidase levels in the hearts of Br2- or Br2 reactant-exposed rats. Increased bromination of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and increased phosphalamban after Br2 inhalation decreased cardiac SERCA activity by 70%. SERCA inactivation was accompanied by increased Ca2+-sensitive LV calpain activity. The calpain-specific inhibitor MDL28170 administered within 1 h after exposure significantly decreased calpain activity and acute mortality. Bromine inhalation and formation of reactive brominated species caused acute cardiac injury and myocardial damage that can lead to heart failure. NEW & NOTEWORTHY The present study defines left ventricular systolic and diastolic dysfunction due to cardiac injury after bromine (Br2) inhalation. A calpain-dependent mechanism was identified as a potential mediator of cardiac ultrastructure damage. This study not only highlights the importance of monitoring acute cardiac symptoms in victims of Br2 exposure but also defines calpains as a potential target to treat Br2-induced toxicity.


Asunto(s)
Bromo/toxicidad , Calpaína/metabolismo , Daño por Reperfusión Miocárdica/etiología , Miocitos Cardíacos/efectos de los fármacos , Disfunción Ventricular/etiología , Administración por Inhalación , Animales , Biomarcadores/sangre , Bromo/administración & dosificación , Células Cultivadas , Hemodinámica , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Contracción Miocárdica , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Ratas Sprague-Dawley , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Disfunción Ventricular/metabolismo , Disfunción Ventricular/patología , Remodelación Ventricular
9.
J Am Soc Nephrol ; 28(5): 1362-1369, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28220030

RESUMEN

Salt resistance/sensitivity refers specifically to the effect of dietary sodium chloride (salt) intake on BP. Increased dietary salt intake promotes an early and uniform expansion of extracellular fluid volume and increased cardiac output. To compensate for these hemodynamic changes and maintain constant BP in salt resistance, renal and peripheral vascular resistance falls and is associated with an increase in production of nitric oxide. In contrast, the decline in peripheral vascular resistance and the increase in nitric oxide are impaired or absent in salt sensitivity, promoting an increase in BP in these individuals. Endothelial dysfunction may pose a particularly significant risk factor in the development of salt sensitivity and subsequent hypertension. Vulnerable salt-sensitive populations may have in common underlying endothelial dysfunction due to genetic or environmental influences. These individuals may be very sensitive to the hemodynamic stress of increased effective blood volume, setting in motion untoward molecular and biochemical events that lead to overproduction of TGF-ß, oxidative stress, and limited bioavailable nitric oxide. Finally, chronic high-salt ingestion produces endothelial dysfunction, even in salt-resistant subjects. Thus, the complex syndrome of salt sensitivity may be a function of the endothelium, which is integrally involved in the vascular responses to high salt intake.


Asunto(s)
Hipertensión/inducido químicamente , Cloruro de Sodio Dietético/efectos adversos , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Humanos
10.
Am J Physiol Heart Circ Physiol ; 313(1): H32-H45, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28455287

RESUMEN

Heart failure due to chronic volume overload (VO) in rats and humans is characterized by disorganization of the cardiomyocyte desmin/mitochondrial network. Here, we tested the hypothesis that desmin breakdown is an early and continuous process throughout VO. Male Sprague-Dawley rats had aortocaval fistula (ACF) or sham surgery and were examined 24 h and 4 and 12 wk later. Desmin/mitochondrial ultrastructure was examined by transmission electron microscopy (TEM) and immunohistochemistry (IHC). Protein and kinome analysis were performed in isolated cardiomyocytes, and desmin cleavage was assessed by mass spectrometry in left ventricular (LV) tissue. Echocardiography demonstrated a 40% decrease in the LV mass-to-volume ratio with spherical remodeling at 4 wk with ACF and LV systolic dysfunction at 12 wk. Starting at 24 h and continuing to 4 and 12 wk, with ACF there is TEM evidence of extensive mitochondrial clustering, IHC evidence of disorganization associated with desmin breakdown, and desmin protein cleavage verified by Western blot analysis and mass spectrometry. IHC results revealed that ACF cardiomyocytes at 4 and 12 wk had perinuclear translocation of αB-crystallin from the Z disk with increased α, ß-unsaturated aldehyde 4-hydroxynonelal. Use of protein markers with verification by TUNEL staining and kinome analysis revealed an absence of cardiomyocyte apoptosis at 4 and 12 wk of ACF. Significant increases in protein indicators of mitophagy were countered by a sixfold increase in p62/sequestosome-1, which is indicative of an inability to complete autophagy. An early and continuous disruption of the desmin/mitochondrial architecture, accompanied by oxidative stress and inhibition of apoptosis and mitophagy, suggests its causal role in LV dilatation and systolic dysfunction in VO.NEW & NOTEWORTHY This study provides new evidence of early onset (24 h) and continuous (4-12 wk) desmin misarrangement and disruption of the normal sarcomeric and mitochondrial architecture throughout the progression of volume overload heart failure, suggesting a causal link between desmin cleavage and mitochondrial disorganization and damage.


Asunto(s)
Desmina/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Mitocondrias Cardíacas/ultraestructura , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Animales , Apoptosis , Células Cultivadas , Enfermedad Crónica , Insuficiencia Cardíaca/complicaciones , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/ultraestructura , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley , Disfunción Ventricular Izquierda/complicaciones
11.
Curr Hypertens Rep ; 19(2): 16, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28233239

RESUMEN

PURPOSE OF THE REVIEW: Drugs targeting the renin-angiotensin system (RAS), namely angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers, are the most commonly prescribed drugs for patients with or at risk for cardiovascular events. However, new treatment strategies aimed at mitigating the rise of the heart failure pandemic are warranted because clinical trials show that RAS blockers have limited benefits in halting disease progression. The main goal of this review is to put forward the concept of an intracrine RAS signaling through the novel angiotensin-(1-12)/chymase axis as the main source of deleterious angiotensin II (Ang II) in cardiac maladaptive remodeling leading to heart failure (HF). RECENT FINDINGS: Expanding traditional knowledge, Ang II can be produced in tissues independently from the circulatory renin-angiotensin system. In the heart, angiotensin-(1-12) [Ang-(1-12)], a recently discovered derivative of angiotensinogen, is a precursor of Ang II, and chymase rather than ACE is the main enzyme contributing to the direct production of Ang II from Ang-(1-12). The Ang-(1-12)/chymase axis is an independent intracrine pathway accounting for the trophic, contractile, and pro-arrhythmic Ang II actions in the human heart. Ang-(1-12) expression and chymase activity have been found elevated in the left atrial appendage of heart disease subjects, suggesting a pivotal role of this axis in the progression of HF. Recent meta-analysis of large clinical trials on the use of ACE inhibitors and angiotensin receptor blockers in cardiovascular disease has demonstrated an imbalance between patients that significantly benefit from these therapeutic agents and those that remain at risk for heart disease progression. Looking to find an explanation, detailed investigation on the RAS has unveiled a previously unrecognized complexity of substrates and enzymes in tissues ultimately associated with the production of Ang II that may explain the shortcomings of ACE inhibition and angiotensin receptor blockade. Discovery of the Ang-(1-12)/chymase axis in human hearts, capable of producing Ang II independently from the circulatory RAS, has led to the notion that a tissue-delimited RAS signaling in an intracrine fashion may account for the deleterious effects of Ang II in the heart, contributing to the transition from maladaptive cardiac remodeling to heart failure. Targeting intracellular RAS signaling may improve current therapies aimed at reducing the burden of heart failure.


Asunto(s)
Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Angiotensinógeno/metabolismo , Quimasas/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Hipertensión/tratamiento farmacológico , Fragmentos de Péptidos/metabolismo , Sistema Renina-Angiotensina/fisiología , Animales , Humanos , Receptores de Angiotensina/fisiología , Sistema Renina-Angiotensina/efectos de los fármacos
12.
J Mol Cell Cardiol ; 92: 1-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26807691

RESUMEN

BACKGROUND: Previous work has identified mast cells as the major source of chymase largely associated with a profibrotic phenotype. We recently reported increased fibroblast autophagic procollagen degradation in a rat model of pure volume overload (VO). Here we demonstrate a connection between increased fibroblast chymase production and autophagic digestion of procollagen in the pure VO of aortocaval fistula (ACF) in the rat. METHODS AND RESULTS: Isolated LV fibroblasts taken from 4 and 12week ACF Sprague-Dawley rats have significant increases in chymase mRNA and chymase activity. Increased intracellular chymase protein is documented by immunocytochemistry in the ACF fibroblasts compared to cells obtained from age-matched sham rats. To implicate VO as a stimulus for chymase production, we show that isolated adult rat LV fibroblasts subjected to 24h of 20% cyclical stretch induces chymase mRNA and protein production. Exogenous chymase treatment of control isolated adult cardiac fibroblasts demonstrates that chymase is internalized through a dynamin-dependent mechanism. Chymase treatment leads to an increased formation of autophagic vacuoles, LC3-II production, autophagic flux, resulting in increased procollagen degradation. Chymase inhibitor treatment reduces cyclical stretch-induced autophagy in isolated cardiac fibroblasts, demonstrating chymase's role in autophagy induction. CONCLUSION: In a pure VO model, chymase produced in adult cardiac fibroblasts leads to autophagic degradation of newly synthesized intracellular procollagen I, suggesting a new role of chymase in extracellular matrix degradation.


Asunto(s)
Aorta/metabolismo , Quimasas/biosíntesis , Insuficiencia Cardíaca/metabolismo , Procolágeno/metabolismo , Animales , Aorta/patología , Fístula Arterio-Arterial , Autofagia/genética , Quimasas/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Insuficiencia Cardíaca/patología , Humanos , Mastocitos/metabolismo , Mastocitos/patología , Miocardio/metabolismo , Miocardio/patología , Fagosomas/metabolismo , Proteolisis , ARN Mensajero/biosíntesis , Ratas
13.
Am J Physiol Heart Circ Physiol ; 310(8): H995-1002, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26873967

RESUMEN

Angiotensin-(1-12) [ANG-(1-12)] is processed into ANG II by chymase in rodent and human heart tissue. Differences in the amino acid sequence of rat and human ANG-(1-12) render the human angiotensinogen (hAGT) protein refractory to cleavage by renin. We used transgenic rats harboring the hAGT gene [TGR(hAGT)L1623] to assess the non-renin-dependent effects of increased hAGT expression on heart function and arterial pressure. Compared with Sprague-Dawley (SD) control rats (n= 11), male homozygous TGR(hAGT)L1623 (n= 9) demonstrated sustained daytime and nighttime hypertension associated with no changes in heart rate but increased heart rate lability. Increased heart weight/tibial length ratio and echocardiographic indexes of cardiac hypertrophy were associated with modest reduction of systolic function in hAGT rats. Robust human ANG-(1-12) immunofluorescence within myocytes of TGR(hAGT)L1623 rats was associated with a fourfold increase in cardiac ANG II content. Chymase enzymatic activity, using the rat or human ANG-(1-12) as a substrate, was not different in the cardiac tissue of SD and hAGT rats. Since both cardiac angiotensin-converting enzyme (ACE) and ACE2 activities were not different among the two strains, the changes in cardiac structure and function, blood pressure, and left ventricular ANG II content might be a product of an increased cardiac expression of ANG II generated through a non-renin-dependent mechanism. The data also underscore the existence in the rat of alternate enzymes capable of acting on hAGT protein. Homozygous transgenic rats expressing the hAGT gene represent a novel tool to investigate the contribution of human relevant renin-independent cardiac ANG II formation and function.


Asunto(s)
Angiotensinógeno/metabolismo , Hipertensión/metabolismo , Miocardio/metabolismo , Fragmentos de Péptidos/metabolismo , Sistema Renina-Angiotensina , Angiotensinógeno/sangre , Angiotensinógeno/genética , Animales , Presión Arterial , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Modelos Animales de Enfermedad , Genotipo , Frecuencia Cardíaca , Homocigoto , Humanos , Hidrólisis , Hipertensión/diagnóstico por imagen , Hipertensión/genética , Hipertensión/fisiopatología , Masculino , Miocardio/patología , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/genética , Fenotipo , Ratas Sprague-Dawley , Ratas Transgénicas , Sistema Renina-Angiotensina/genética , Factores de Tiempo , Ultrasonografía , Función Ventricular Izquierda
14.
Am J Physiol Heart Circ Physiol ; 311(1): H64-75, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27199118

RESUMEN

Myocardial fatty acid ß-oxidation is critical for the maintenance of energy homeostasis and contractile function in the heart, but its regulation is still not fully understood. While thioredoxin-interacting protein (TXNIP) has recently been implicated in cardiac metabolism and mitochondrial function, its effects on ß-oxidation have remained unexplored. Using a new cardiomyocyte-specific TXNIP knockout mouse and working heart perfusion studies, as well as loss- and gain-of-function experiments in rat H9C2 and human AC16 cardiomyocytes, we discovered that TXNIP deficiency promotes myocardial ß-oxidation via signaling through a specific microRNA, miR-33a. TXNIP deficiency leads to increased binding of nuclear factor Y (NFYA) to the sterol regulatory element binding protein 2 (SREBP2) promoter, resulting in transcriptional inhibition of SREBP2 and its intronic miR-33a. This allows for increased translation of the miR-33a target genes and ß-oxidation-promoting enzymes, carnitine octanoyl transferase (CROT), carnitine palmitoyl transferase 1 (CPT1), hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase-ß (HADHB), and AMPKα and is associated with an increase in phospho-AMPKα and phosphorylation/inactivation of acetyl-CoA-carboxylase. Thus, we have identified a novel TXNIP-NFYA-SREBP2/miR-33a-AMPKα/CROT/CPT1/HADHB pathway that is conserved in mouse, rat, and human cardiomyocytes and regulates myocardial ß-oxidation.


Asunto(s)
Proteínas Portadoras/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Tiorredoxinas/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Carnitina Aciltransferasas/genética , Carnitina Aciltransferasas/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Línea Celular , Regulación Enzimológica de la Expresión Génica , Genotipo , Humanos , Preparación de Corazón Aislado , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Subunidad beta de la Proteína Trifuncional Mitocondrial/genética , Subunidad beta de la Proteína Trifuncional Mitocondrial/metabolismo , Miocitos Cardíacos/enzimología , Oxidación-Reducción , Fenotipo , Interferencia de ARN , Ratas , Transducción de Señal , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Tiorredoxinas/genética , Transfección
15.
Am J Physiol Heart Circ Physiol ; 311(2): H404-14, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27233763

RESUMEN

Although it is well-known that excess renin angiotensin system (RAS) activity contributes to the pathophysiology of cardiac and vascular disease, tissue-based expression of RAS genes has given rise to the possibility that intracellularly produced angiotensin II (Ang II) may be a critical contributor to disease processes. An extended form of angiotensin I (Ang I), the dodecapeptide angiotensin-(1-12) [Ang-(1-12)], that generates Ang II directly from chymase, particularly in the human heart, reinforces the possibility that an alternative noncanonical renin independent pathway for Ang II formation may be important in explaining the mechanisms by which the hormone contributes to adverse cardiac and vascular remodeling. This review summarizes the work that has been done in evaluating the functional significance of Ang-(1-12) and how this substrate generated from angiotensinogen by a yet to be identified enzyme enhances knowledge about Ang II pathological actions.


Asunto(s)
Angiotensina II/metabolismo , Angiotensinógeno/metabolismo , Corazón/fisiopatología , Miocardio/metabolismo , Fragmentos de Péptidos/metabolismo , Sistema Renina-Angiotensina , Animales , Quimasas , Humanos , Remodelación Vascular/fisiología , Remodelación Ventricular/fisiología
16.
Biochem Biophys Res Commun ; 478(2): 559-64, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27465904

RESUMEN

We showed previously that rat angiotensin-(1-12) [Ang-(1-12)] is metabolized by chymase and angiotensin converting enzyme (ACE) to generate Angiotensin II (Ang II). Here, we investigated the affinity of cardiac chymase and ACE enzymes for Ang-(1-12) and Angiotensin I (Ang I) substrates. Native plasma membranes (PMs) isolated from heart and lung tissues of adult spontaneously hypertensive rats (SHR) were incubated with radiolabeled (125)I-Ang-(1-12) or (125)I-Ang I, in the absence or presence of a chymase or ACE inhibitor (chymostatin and lisinopril, respectively). Products were quantitated by HPLC connected to an in-line flow-through gamma detector. The rate of (125)I-Ang II formation from (125)I-Ang-(1-12) by chymase was significantly higher (heart: 7.0 ± 0.6 fmol/min/mg; lung: 33 ± 1.2 fmol/min/mg, P < 0.001) when compared to (125)I-Ang I substrate (heart: 0.8 ± 0.1 fmol/min/mg; lung: 2.1 ± 0.1 fmol/min/mg). Substrate affinity of (125)I-Ang-(1-12) for rat cardiac chymase was also confirmed using excess unlabeled Ang-(1-12) or Ang I (0-250 µM). The rate of (125)I-Ang II formation was significantly lower using unlabeled Ang-(1-12) compared to unlabeled Ang I substrate. Kinetic data showed that rat chymase has a lower Km (64 ± 6.3 µM vs 142 ± 17 µM), higher Vmax (13.2 ± 1.3 µM/min/mg vs 1.9 ± 0.2 µM/min/mg) and more than 15-fold higher catalytic efficiency (ratio of Vmax/Km) for Ang-(1-12) compared to Ang I substrate, respectively. We also investigated ACE mediated hydrolysis of (125)I-Ang-(1-12) and (125)I-Ang I in solubilized membrane fractions of the SHR heart and lung. Interestingly, no significant difference in (125)I-Ang II formation by ACE was detected using either substrate, (125)I-Ang-(1-12) or (125)I-Ang I, both in the heart (1.8 ± 0.2 fmol/min/mg and 1.8 ± 0.3 fmol/min/mg, respectively) and in the lungs (239 ± 25 fmol/min/mg and 248 ± 34 fmol/min/mg, respectively). Compared to chymase, ACE-mediated Ang-(1-12) metabolism in the heart was several fold lower. Overall our findings suggest that Ang-(1-12), not Ang I, is the better substrate for Ang II formation by chymase in adult rats. In addition, this confirms our previous observation that chymase (rather than ACE) is the main hydrolyzing enzyme responsible for Ang II generation from Ang-(1-12) in the adult rat heart.


Asunto(s)
Angiotensina II/metabolismo , Angiotensina I/metabolismo , Angiotensinógeno/metabolismo , Quimasas/metabolismo , Miocardio/enzimología , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Animales , Masculino , Miocardio/metabolismo , Ratas , Ratas Endogámicas SHR
17.
Circ Res ; 114(7): 1094-102, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24526702

RESUMEN

RATIONALE: Vascular calcification is a serious cardiovascular complication that contributes to the increased morbidity and mortality of patients with diabetes mellitus. Hyperglycemia, a hallmark of diabetes mellitus, is associated with increased vascular calcification and increased modification of proteins by O-linked N-acetylglucosamine (O-GlcNAcylation). OBJECTIVE: We sought to determine the role of protein O-GlcNAcylation in regulating vascular calcification and the underlying mechanisms. METHODS AND RESULTS: Low-dose streptozotocin-induced diabetic mice exhibited increased aortic O-GlcNAcylation and vascular calcification, which was also associated with impaired aortic compliance in mice. Elevation of O-GlcNAcylation by administration of Thiamet-G, a potent inhibitor for O-GlcNAcase that removes O-GlcNAcylation, further accelerated vascular calcification and worsened aortic compliance of diabetic mice in vivo. Increased O-GlcNAcylation, either by Thiamet-G or O-GlcNAcase knockdown, promoted calcification of primary mouse vascular smooth muscle cells. Increased O-GlcNAcylation in diabetic arteries or in the O-GlcNAcase knockdown vascular smooth muscle cell upregulated expression of the osteogenic transcription factor Runx2 and enhanced activation of AKT. O-GlcNAcylation of AKT at two new sites, T430 and T479, promoted AKT phosphorylation, which in turn enhanced vascular smooth muscle cell calcification. Site-directed mutation of AKT at T430 and T479 decreased O-GlcNAcylation, inhibited phosphorylation of AKT at S473 and binding of mammalian target of rapamycin complex 2 to AKT, and subsequently blocked Runx2 transactivity and vascular smooth muscle cell calcification. CONCLUSIONS: O-GlcNAcylation of AKT at 2 new sites enhanced AKT phosphorylation and activation, thus promoting vascular calcification. Our studies have identified a novel causative effect of O-GlcNAcylation in regulating vascular calcification in diabetes mellitus and uncovered a key molecular mechanism underlying O-GlcNAcylation-mediated activation of AKT.


Asunto(s)
Acetilglucosamina/metabolismo , Diabetes Mellitus Experimental/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Calcificación Vascular/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glicosilación , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Complejos Multiproteicos/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/genética , Piranos/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Tiazoles/farmacología , Calcificación Vascular/patología , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo
18.
J Mol Cell Cardiol ; 89(Pt B): 241-250, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26596413

RESUMEN

In a pure volume overloaded (VO) heart, interstitial collagen loss is degraded by matrix metalloproteinases (MMPs) that leads to left ventricular (LV) dilatation and heart failure. Cardiac fibroblasts are the primary source of extracellular matrix proteins that connect cardiomyocytes. The goal of this study was to determine how VO affects intracellular procollagen in cardiac fibroblasts. Using the aortocaval fistula (ACF) model in Sprague-Dawley rats, we demonstrate that cardiac fibroblasts isolated from 4 and 12 wk ACF animals have decreased intracellular procollagen I compared to the fibroblasts from age-matched shams. The reduction of procollagen I is associated with increased autophagy as demonstrated by increased autophagic vacuoles and LC3-II expression. To test the relationship between autophagy and procollagen degradation, we treated adult cardiac fibroblasts with either an autophagy inducer, rapamycin, or an inhibitor, wortmannin, and found that procollagen I protein levels were decreased in fibroblasts treated with rapamycin and elevated in wortmannin-treated cells. In addition, we demonstrated that VO induces oxidative stresses in cardiac fibroblasts from 4 and 12 wk ACF rats. Treatment of cultured cardiac fibroblasts with an oxidative stress-inducing agent (DMNQ) induces autophagy and intracellular procollagen I and fibronectin degradation, which is reversed by wortmannin but not by the global MMP inhibitor (PD166793). Mechanical stretch of cardiac fibroblasts also induces oxidative stress and autophagic degradation of procollagen I and fibronectin. Our results suggest that in addition to the well-known effects of MMPs on extracellular collagen degradation in VO, there is a concurrent degradation of intracellular procollagen and fibronectin mediated by oxidative stress-induced autophagy in cardiac fibroblasts.


Asunto(s)
Autofagia , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Miocardio/patología , Proteolisis , Animales , Peso Corporal , Separación Celular , Activación Enzimática , Fibroblastos/ultraestructura , Fibronectinas/metabolismo , Frecuencia Cardíaca , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Estrés Oxidativo , Ratas Sprague-Dawley , Estrés Mecánico , Vacuolas/metabolismo , Vacuolas/ultraestructura , Fístula Vascular/patología , Fístula Vascular/fisiopatología , Función Ventricular Izquierda , Remodelación Ventricular
19.
Am J Respir Cell Mol Biol ; 52(5): 594-602, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25255042

RESUMEN

Preterm infants are at high risk for long-term abnormalities in cardiopulmonary function. Our objectives were to determine the long-term effects of hypoxia or hyperoxia on cardiopulmonary development and function in an immature animal model. Newborn C57BL/6 mice were exposed to air, hypoxia (12% oxygen), or hyperoxia (85% oxygen) from Postnatal Day 2-14, and then returned to air for 10 weeks (n = 2 litters per condition; > 10/group). Echocardiography, blood pressure, lung function, and lung development were evaluated at 12-14 weeks of age. Lungs from hyperoxia- or hypoxia-exposed mice were larger and more compliant (compliance: air, 0.034 ± 0.001 ml/cm H2O; hypoxia, 0.049 ± 0.002 ml/cm H2O; hyperoxia, 0.053 ± 0.002 ml/cm H2O; P < 0.001 air versus others). Increased airway reactivity, reduced bronchial M2 receptor staining, and increased bronchial α-smooth muscle actin content were noted in hyperoxia-exposed mice (maximal total lung resistance with methacholine: air, 1.89 ± 0.17 cm H2O ⋅ s/ml; hypoxia, 1.52 ± 0.34 cm H2O ⋅ s/ml; hyperoxia, 4.19 ± 0.77 cm H2O ⋅ s/ml; P < 0.004 air versus hyperoxia). Hyperoxia- or hypoxia-exposed mice had larger and fewer alveoli (mean linear intercept: air, 40.2 ± 0. 0.8 µm; hypoxia, 76.4 ± 2.4 µm; hyperoxia, 95.6 ± 4.6 µm; P < 0.001 air versus others; radial alveolar count [n]: air, 11.1 ± 0.4; hypoxia, 5.7 ± 0.3; hyperoxia, 5.6 ± 0.3; P < 0.001 air versus others). Hyperoxia-exposed adult mice had left ventricular dysfunction without systemic hypertension. In conclusion, exposure of newborn mice to hyperoxia or hypoxia leads to cardiopulmonary abnormalities in adult life, similar to that described in ex-preterm infants. This animal model may help to identify underlying mechanisms and to develop therapeutic strategies for pulmonary morbidity in former preterm infants.


Asunto(s)
Sistema Cardiovascular/fisiopatología , Hiperoxia/fisiopatología , Hipoxia/fisiopatología , Pulmón/fisiopatología , Actinas/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Presión Sanguínea , Hiperreactividad Bronquial/etiología , Hiperreactividad Bronquial/fisiopatología , Broncoconstricción , Sistema Cardiovascular/crecimiento & desarrollo , Colágeno/metabolismo , Modelos Animales de Enfermedad , Elastina/metabolismo , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Hipoxia/complicaciones , Hipoxia/metabolismo , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Rendimiento Pulmonar , Ratones Endogámicos C57BL , Receptor Muscarínico M2/metabolismo , Factores de Tiempo , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda
20.
Lab Invest ; 95(2): 132-41, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25437645

RESUMEN

Atherosclerosis and valvular heart disease often require treatment with corrective surgery to prevent future myocardial infarction, ischemic heart disease, and heart failure. Mechanisms underlying the development of the associated complications of surgery are multifactorial and have been linked to inflammation and oxidative stress, classically as measured in the blood or plasma of patients. Postoperative pericardial fluid (PO-PCF) has not been investigated in depth with respect to the potential to induce oxidative stress. This is important because cardiac surgery disrupts the integrity of the pericardial membrane surrounding the heart and causes significant alterations in the composition of the pericardial fluid (PCF). This includes contamination with hemolyzed blood and high concentrations of oxidized hemoglobin, which suggests that cardiac surgery results in oxidative stress within the pericardial space. Accordingly, we tested the hypothesis that PO-PCF is highly pro-oxidant and that the potential interaction between inflammatory cell-derived hydrogen peroxide with hemoglobin is associated with oxidative stress. Blood and PCF were collected from 31 patients at the time of surgery and postoperatively from 4 to 48 h after coronary artery bypass grafting, valve replacement, or valve repair (mitral or aortic). PO-PCF contained high concentrations of neutrophils and monocytes, which are capable of generating elevated amounts of superoxide and hydrogen peroxide through the oxidative burst. In addition, PO-PCF primed naive neutrophils resulting in an enhanced oxidative burst upon stimulation. The PO-PCF also contained increased concentrations of cell-free oxidized hemoglobin that was associated with elevated levels of F2α isoprostanes and prostaglandins, consistent with both oxidative stress and activation of cyclooxygenase. Lastly, protein analysis of the PO-PCF revealed evidence of protein thiol oxidation and protein carbonylation. We conclude that PO-PCF is highly pro-oxidant and speculate that it may contribute to the risk of postoperative complications.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/efectos adversos , Líquido Extracelular/metabolismo , Hemoglobinas/metabolismo , Estrés Oxidativo/fisiología , Pericardio/fisiopatología , Complicaciones Posoperatorias/fisiopatología , Análisis de Varianza , Recuento de Células Sanguíneas , Electroforesis en Gel de Poliacrilamida , F2-Isoprostanos/metabolismo , Citometría de Flujo , Humanos , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/fisiología , Espectrometría de Masas , Neutrófilos/metabolismo , Oxidación-Reducción , Pericardio/metabolismo , Carbonilación Proteica , Colorantes de Rosanilina , Compuestos de Sulfhidrilo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA