Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(1): 284-284.e1, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007264

RESUMEN

Ophthalmic, maxillary, and mandibular branches of the trigeminal nerve provide sensory innervation to orofacial tissues. Trigeminal sensory neurons respond to a diverse array of sensory stimuli to generate distinct sensations, including thermosensation, mechanosensation, itching, and pain. These sensory neurons also detect the distinct sharpness or pungency of many foods and beverages. This SnapShot highlights the transduction ion channels critical to orofacial sensation.


Asunto(s)
Sensación/fisiología , Nervio Trigémino/anatomía & histología , Nervio Trigémino/fisiología , Nervios Craneales/anatomía & histología , Nervios Craneales/fisiología , Humanos , Neuronas Aferentes/fisiología , Dolor/fisiopatología
2.
Cell ; 155(2): 278-84, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24120130

RESUMEN

Living organisms sense their physical environment through cellular mechanotransduction, which converts mechanical forces into electrical and biochemical signals. In turn, signal transduction serves a wide variety of functions, from basic cellular processes as diverse as proliferation, differentiation, migration, and apoptosis up to some of the most sophisticated senses, including touch and hearing. Accordingly, defects in mechanosensing potentially lead to diverse diseases and disorders such as hearing loss, cardiomyopathies, muscular dystrophies, chronic pain, and cancer. Here, we review the status of mechanically activated ion channel discovery and discuss current challenges to define their properties and physiological functions.


Asunto(s)
Canales Iónicos/metabolismo , Mecanorreceptores/fisiología , Sensación , Animales , Humanos , Células Receptoras Sensoriales/fisiología
3.
Circ Res ; 134(5): 572-591, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38422173

RESUMEN

The cardiovascular system provides blood supply throughout the body and as such is perpetually applying mechanical forces to cells and tissues. Thus, this system is primed with mechanosensory structures that respond and adapt to changes in mechanical stimuli. Since their discovery in 2010, PIEZO ion channels have dominated the field of mechanobiology. These have been proposed as the long-sought-after mechanosensitive excitatory channels involved in touch and proprioception in mammals. However, more and more pieces of evidence point to the importance of PIEZO channels in cardiovascular activities and disease development. PIEZO channel-related cardiac functions include transducing hemodynamic forces in endothelial and vascular cells, red blood cell homeostasis, platelet aggregation, and arterial blood pressure regulation, among others. PIEZO channels contribute to pathological conditions including cardiac hypertrophy and pulmonary hypertension and congenital syndromes such as generalized lymphatic dysplasia and xerocytosis. In this review, we highlight recent advances in understanding the role of PIEZO channels in cardiovascular functions and diseases. Achievements in this quickly expanding field should open a new road for efficient control of PIEZO-related diseases in cardiovascular functions.


Asunto(s)
Anemia Hemolítica Congénita , Hipertensión Pulmonar , Animales , Femenino , Humanos , Presión Sanguínea , Biofisica , Hidropesía Fetal , Mamíferos
4.
Cell ; 139(3): 587-96, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19879844

RESUMEN

Autosomal-dominant polycystic kidney disease, the most frequent monogenic cause of kidney failure, is induced by mutations in the PKD1 or PKD2 genes, encoding polycystins TRPP1 and TRPP2, respectively. Polycystins are proposed to form a flow-sensitive ion channel complex in the primary cilium of both epithelial and endothelial cells. However, how polycystins contribute to cellular mechanosensitivity remains obscure. Here, we show that TRPP2 inhibits stretch-activated ion channels (SACs). This specific effect is reversed by coexpression with TRPP1, indicating that the TRPP1/TRPP2 ratio regulates pressure sensing. Moreover, deletion of TRPP1 in smooth muscle cells reduces SAC activity and the arterial myogenic tone. Inversely, depletion of TRPP2 in TRPP1-deficient arteries rescues both SAC opening and the myogenic response. Finally, we show that TRPP2 interacts with filamin A and demonstrate that this actin crosslinking protein is critical for SAC regulation. This work uncovers a role for polycystins in regulating pressure sensing.


Asunto(s)
Presión , Canales Catiónicos TRPP/metabolismo , Actinas/metabolismo , Animales , Proteínas Contráctiles/metabolismo , Filaminas , Mecanotransducción Celular , Ratones , Proteínas de Microfilamentos/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Presorreceptores/metabolismo
5.
EMBO J ; 37(8)2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29459435

RESUMEN

Cholesterol is a major lipid component of the mammalian plasma membrane. While much is known about its metabolism, its transport, and its role in atherosclerotic vascular disease, less is known about its role in neuronal pathophysiology. This study reveals an unexpected function of cholesterol in controlling pain transmission. We show that inflammation lowers cholesterol content in skin tissue and sensory DRG culture. Pharmacological depletion of cellular cholesterol entails sensitization of nociceptive neurons and promotes mechanical and thermal hyperalgesia through the activation of voltage-gated Nav1.9 channels. Inflammatory mediators enhance the production of reactive oxygen species and induce partitioning of Nav1.9 channels from cholesterol-rich lipid rafts to cholesterol-poor non-raft regions of the membrane. Low-cholesterol environment enhances voltage-dependent activation of Nav1.9 channels leading to enhanced neuronal excitability, whereas cholesterol replenishment reversed these effects. Consistently, we show that transcutaneous delivery of cholesterol alleviates hypersensitivity in animal models of acute and chronic inflammatory pain. In conclusion, our data establish that membrane cholesterol is a modulator of pain transmission and shed a new light on the relationship between cholesterol homeostasis, inflammation, and pain.


Asunto(s)
Membrana Celular/fisiología , Colesterol/fisiología , Inflamación/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.9/fisiología , Dolor/fisiopatología , Animales , Ganglios Espinales/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Nociceptores/fisiología
6.
FASEB J ; 35(12): e22025, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34758144

RESUMEN

Mepyramine, a first-generation antihistamine targeting the histamine H(1) receptor, was extensively prescribed to patients suffering from allergic reactions and urticaria. Serious adverse effects, especially in case of overdose, were frequently reported, including drowsiness, impaired thinking, convulsion, and coma. Many of these side effects were associated with the blockade of histaminergic or cholinergic receptors. Here we show that mepyramine directly inhibits a variety of voltage-gated sodium channels, including the Tetrodotoxin-sensitive isoforms and the main isoforms (Nav1.7, Nav1.8, and Nav1.9) of nociceptors. Estimated IC50 were within the range of drug concentrations detected in poisoned patients. Mepyramine inhibited sodium channels through fast- or slow-inactivated state preference depending on the isoform. Moreover, mepyramine inhibited the firing responses of C- and Aß-type nerve fibers in ex vivo skin-nerve preparations. Locally applied mepyramine had analgesic effects on the scorpion toxin-induced excruciating pain and produced pain relief in acute, inflammatory, and chronic pain models. Collectively, these data provide evidence that mepyramine has the potential to be developed as a topical analgesic agent.


Asunto(s)
Artritis Experimental/complicaciones , Ganglios Espinales/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.8/fisiología , Nociceptores/efectos de los fármacos , Dolor/tratamiento farmacológico , Pirilamina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Potenciales de Acción , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Antagonistas de los Receptores Histamínicos H1/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.8/química , Nociceptores/metabolismo , Nociceptores/patología , Dolor/etiología , Dolor/metabolismo , Dolor/patología
7.
Cell ; 134(2): 366-366.e1, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18662550
8.
Nat Rev Neurosci ; 12(3): 139-53, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21304548

RESUMEN

The somatosensory system mediates fundamental physiological functions, including the senses of touch, pain and proprioception. This variety of functions is matched by a diverse array of mechanosensory neurons that respond to force in a specific fashion. Mechanotransduction begins at the sensory nerve endings, which rapidly transform mechanical forces into electrical signals. Progress has been made in establishing the functional properties of mechanoreceptors, but it has been remarkably difficult to characterize mechanotranducer channels at the molecular level. However, in the past few years, new functional assays have provided insights into the basic properties and molecular identity of mechanotransducer channels in mammalian sensory neurons. The recent identification of novel families of proteins as mechanosensing molecules will undoubtedly accelerate our understanding of mechanotransduction mechanisms in mammalian somatosensation.


Asunto(s)
Potenciales Evocados Somatosensoriales/fisiología , Mecanorreceptores/fisiología , Mecanotransducción Celular/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Humanos , Tacto/fisiología
9.
J Neurosci ; 34(15): 5233-44, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24719102

RESUMEN

Voltage-gated sodium (Nav) channels play a central role in gastrointestinal physiology because they transmit depolarizing impulses in enteric neurons, thereby enabling the coordination of intestinal motility. However, little is known about the ion channel machinery that specifies firing pattern of enteric neurons. Here, we used in situ patch-clamp recording of myenteric neurons from mice to define functionally the Nav channel subtypes responsible for the electrical signature of myenteric neurons. We found that mouse myenteric neurons exhibit two types of tetrodotoxin-resistant Na(+) currents: an early inactivating Na(+) current (INaT) and a persistent Na(+) current (INaP). INaT was encountered in all myenteric neurons, whereas INaP was preferentially found in Dogiel type II sensory neurons. Knock-out mouse studies, in combination with pharmacological assays, indicate that INaT is carried by the Scn5a-encoded "cardiac" Nav1.5, whereas INaP is attributed to the Scn11a-encoded Nav1.9. Current-clamp experiments show that Nav1.9 flows at subthreshold voltages, generating tonic firing. In addition, action potential (AP) clamp reveals that Nav1.5 contributes to the upstroke velocity of APs, whereas Nav1.9, which remains active during the falling phase, opposes AP repolarization. We developed a computational model of a Dogiel type II myenteric neuron that successfully reproduces all experimentally observed phenomena and highlights the differential roles of Nav1.5 and Nav1.9 in the control of excitability. Our data illustrate how excitability can be finely tuned to provide specific firing templates by the selective deployment of Nav1.5 and Nav1.9 isoforms. We propose that Nav-dependent ENS disorders of excitability may play important roles in the pathogenesis of digestive diseases.


Asunto(s)
Potenciales de Acción , Plexo Mientérico/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.9/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Plexo Mientérico/citología , Plexo Mientérico/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.9/genética , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células Receptoras Sensoriales/fisiología , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
10.
Pflugers Arch ; 467(1): 109-19, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25416542

RESUMEN

Physical contact with the external world occurs through specialized neural structures called mechanoreceptors. Cutaneous mechanoreceptors provide information to the central nervous system (CNS) about touch, pressure, vibration, and skin stretch. The physiological function of these mechanoreceptors is to convert physical forces into neuronal signals. Key questions concern the molecular identity of the mechanoelectric transducer channels and the mechanisms by which the physical parameters of the mechanical stimulus are encoded into patterns of action potentials (APs). Compelling data indicate that the biophysical traits of mechanosensitive channels combined with the collection of voltage-gated channels are essential to describe the nature of the stimulus. Recent research also points to a critical role of the auxiliary cell-nerve ending communication in encoding stimulus properties. This review describes the characteristics of ion channels responsible for translating mechanical stimuli into the neural codes that underlie touch perception and pain.


Asunto(s)
Ganglios Espinales/fisiología , Mecanorreceptores/fisiología , Mecanotransducción Celular/fisiología , Fenómenos Fisiológicos de la Piel , Piel/inervación , Tacto/fisiología , Potenciales de Acción/fisiología , Vías Aferentes/fisiología , Animales , Humanos , Modelos Biológicos , Percepción del Dolor/fisiología
11.
EMBO J ; 29(7): 1176-91, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20168298

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in two genes, PKD1 and PKD2, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Earlier work has shown that PC1 and PC2 assemble into a polycystin complex implicated in kidney morphogenesis. PC2 also assembles into homomers of uncertain functional significance. However, little is known about the molecular mechanisms that direct polycystin complex assembly and specify its functions. We have identified a coiled coil in the C-terminus of PC2 that functions as a homodimerization domain essential for PC1 binding but not for its self-oligomerization. Dimerization-defective PC2 mutants were unable to reconstitute PC1/PC2 complexes either at the plasma membrane (PM) or at PM-endoplasmic reticulum (ER) junctions but could still function as ER Ca(2+)-release channels. Expression of dimerization-defective PC2 mutants in zebrafish resulted in a cystic phenotype but had lesser effects on organ laterality. We conclude that C-terminal dimerization of PC2 specifies the formation of polycystin complexes but not formation of ER-localized PC2 channels. Mutations that affect PC2 C-terminal homo- and heteromerization are the likely molecular basis of cyst formation in ADPKD.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Línea Celular , Dimerización , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Expresión Génica , Humanos , Riñón/patología , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Canales Catiónicos TRPP/genética , Técnicas del Sistema de Dos Híbridos , Pez Cebra/genética
12.
bioRxiv ; 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37131687

RESUMEN

The enteric nervous system (ENS) is a complex network of diverse molecularly defined classes of neurons embedded in the gastrointestinal wall and responsible for controlling the major functions of the gut. As in the central nervous system, the vast array of ENS neurons is interconnected by chemical synapses. Despite several studies reporting the expression of ionotropic glutamate receptors in the ENS, their roles in the gut remain elusive. Here, by using an array of immunohistochemistry, molecular profiling and functional assays, we uncover a new role for d-serine (d-Ser) and non-conventional GluN1-GluN3 N-methyl d-aspartate receptors (NMDARs) in regulating ENS functions. We demonstrate that d-Ser is produced by serine racemase (SR) expressed in enteric neurons. By using both in situ patch clamp recording and calcium imaging, we show that d-Ser alone acts as an excitatory neurotransmitter in the ENS independently of the conventional GluN1-GluN2 NMDARs. Instead, d-Ser directly gates the non-conventional GluN1-GluN3 NMDARs in enteric neurons from both mouse and guinea-pig. Pharmacological inhibition or potentiation of GluN1-GluN3 NMDARs had opposite effects on mouse colonic motor activities, while genetically driven loss of SR impairs gut transit and fluid content of pellet output. Our results demonstrate the existence of native GluN1-GluN3 NMDARs in enteric neurons and open new perspectives on the exploration of excitatory d-Ser receptors in gut function and diseases.

13.
J Biol Chem ; 286(21): 18994-9000, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21474446

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited cause of kidney failure, is caused by mutations in either PKD1 (85%) or PKD2 (15%). The PKD2 protein, polycystin-2 (PC2 or TRPP2), is a member of the transient receptor potential (TRP) superfamily and functions as a nonselective calcium channel. PC2 has been found to form oligomers in native tissues, suggesting that similar to other TRP channels, it may form functional homo- or heterotetramers with other TRP subunits. We have recently demonstrated that the homodimerization of PC2 is mediated by both N-terminal and C-terminal domains, and it is known that PC2 can heterodimerize with PC1, TRPC1, and TRPV4. In this paper, we report that a single cysteine residue, Cys(632), mutated in a known PKD2 pedigree, constitutes the third dimerization domain for PC2. PC2 truncation mutants lacking both N and C termini could still dimerize under nonreducing conditions. Mutation of Cys(632) alone abolished dimerization in these mutants, indicating that it was the critical residue mediating disulfide bond formation between PC2 monomers. Co-expression of C632A PC2 mutants with wild-type PC2 channels reduced ATP-sensitive endoplasmic reticulum Ca(2+) release in HEK293 cells. The combination of C632A and mutations disrupting the C-terminal coiled-coil domain (Val(846), Ile(853), Ile(860), Leu(867) or 4M) nearly abolished dimer formation and ATP-dependent Ca(2+) release. However, unlike the 4M PC2 mutant, a C632A mutant could still heterodimerize with polycystin-1 (PC1). Our results indicate that PC2 homodimerization is regulated by three distinct domains and that these events regulate formation of the tetrameric PC2 channel.


Asunto(s)
Mutación Missense , Multimerización de Proteína , Canales Catiónicos TRPP/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Sustitución de Aminoácidos , Calcio/metabolismo , Disulfuros/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Estructura Terciaria de Proteína , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
14.
Neuron ; 110(17): 2713-2727, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35907398

RESUMEN

Many ion channels have been described as mechanosensitive according to various criteria. Most broadly defined, an ion channel is called mechanosensitive if its activity is controlled by application of a physical force. The last decade has witnessed a revolution in mechanosensory physiology at the molecular, cellular, and system levels, both in health and in diseases. Since the discovery of the PIEZO proteins as prototypical mechanosensitive channel, many proteins have been proposed to transduce mechanosensory information in mammals. However, few of these newly identified candidates have all the attributes of bona fide, pore-forming mechanosensitive ion channels. In this perspective, we will cover and discuss new data that have advanced our understanding of mechanosensation at the molecular level.


Asunto(s)
Canales Iónicos , Mecanotransducción Celular , Animales , Canales Iónicos/metabolismo , Mamíferos/metabolismo , Mecanotransducción Celular/fisiología
15.
J Neurosci ; 30(40): 13384-95, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20926665

RESUMEN

How desensitization of mechanotransducer currents regulates afferent signal generation in mammalian sensory neurons is essentially unknown. Here, we dissected desensitization mechanisms of mechanotransducer channels in rat sensory neurons that mediate the sense of touch and pain. We identified four types of mechanotransducer currents that distribute differentially in cutaneous nociceptors and mechanoreceptors and that differ in desensitization rates. Desensitization of mechanotransducer channels in mechanoreceptors was fast and mediated by channel inactivation and adaptation, which reduces the mechanical force sensed by the transduction channel. Both processes were promoted by negative voltage. These properties of mechanotransducer channels suited them to encode the dynamic parameters of the stimulus. In contrast, inactivation and adaptation of mechanotransducer channels in nociceptors had slow time courses and were suited to encode duration of the stimulus. Thus, desensitization properties of mechanotransducer currents relate to their functions as sensors of phasic and tonic stimuli and enable sensory neurons to achieve efficient stimulus representation.


Asunto(s)
Activación del Canal Iónico/fisiología , Mecanorreceptores/fisiología , Mecanotransducción Celular/fisiología , Inhibición Neural/fisiología , Células Receptoras Sensoriales/fisiología , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Activación del Canal Iónico/genética , Masculino , Mecanotransducción Celular/genética , Inhibición Neural/genética , Nociceptores/fisiología , Dolor/genética , Dolor/fisiopatología , Técnicas de Placa-Clamp/métodos , Fenotipo , Ratas , Ratas Wistar , Factores de Tiempo , Tacto/genética , Tacto/fisiología
16.
J Neurosci ; 30(37): 12414-23, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20844136

RESUMEN

Nociceptors in peripheral ganglia display a remarkable functional heterogeneity. They can be divided into the following two major classes: peptidergic and nonpeptidergic neurons. Although RUNX1 has been shown to play a pivotal role in the specification of nonpeptidergic neurons, the mechanisms driving peptidergic differentiation remain elusive. Here, we show that hepatocyte growth factor (HGF)-Met signaling acts synergistically with nerve growth factor-tyrosine kinase receptor A to promote peptidergic identity in a subset of prospective nociceptors. We provide in vivo evidence that a population of peptidergic neurons, derived from the RUNX1 lineage, require Met activity for the proper extinction of Runx1 and optimal activation of CGRP (calcitonin gene-related peptide). Moreover, we show that RUNX1 in turn represses Met expression in nonpeptidergic neurons, revealing a bidirectional cross talk between Met and RUNX1. Together, our novel findings support a model in which peptidergic versus nonpeptidergic specification depends on a balance between HGF-Met signaling and Runx1 extinction/maintenance.


Asunto(s)
Diferenciación Celular/fisiología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Factor de Crecimiento de Hepatocito/fisiología , Nociceptores/metabolismo , Proteínas Proto-Oncogénicas c-met/fisiología , Transducción de Señal/fisiología , Animales , Linaje de la Célula/fisiología , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/biosíntesis , Ganglios Espinales/citología , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Neurológicos , Neuropéptidos/fisiología , Nociceptores/citología , Proteínas Proto-Oncogénicas c-met/deficiencia , Proteínas Proto-Oncogénicas c-met/genética
17.
Exp Dermatol ; 20(5): 401-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21355886

RESUMEN

Touch is detected through receptors located in the skin and the activation of channels in sensory nerve fibres. Epidermal keratinocytes themselves, however, may sense mechanical stimulus and contribute to skin sensation. Here, we showed that the mechanical stimulation of human keratinocytes by hypo-osmotic shock releases adenosine triphosphate (ATP) and increases intracellular calcium. We demonstrated that the release of ATP was found to be calcium independent because emptying the intracellular calcium stores did not cause ATP release; ATP release was still observed in the absence of external calcium and it persisted on chelating cytosolic calcium. On the other hand, the released ATP activated purinergic receptors and mobilized intracellular calcium stores. The resulting depletion of stored calcium led to the activation of capacitative calcium entry. Increase in cytosolic calcium concentration was blocked by the purinergic receptor blocker suramin, phospholipase C inhibitor and apyrase, which hydrolyses ATP. Collectively, our data demonstrate that human keratinocytes are mechanically activated by hypo-osmotic shock, leading first to the release of ATP, which in turn stimulates purinergic receptors, resulting in the mobilization of intracellular calcium and capacitative calcium entry. These results emphasize the crucial role of ATP signalling in the transduction of mechanical stimuli in human keratinocytes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Queratinocitos/fisiología , Mecanotransducción Celular/fisiología , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Células Cultivadas , Quelantes/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Gadolinio/farmacología , Humanos , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/metabolismo , Queratinocitos/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos , Presión Osmótica/fisiología , Estimulación Física , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y/metabolismo , Tapsigargina/farmacología , Canales de Potencial de Receptor Transitorio/agonistas , Canales de Potencial de Receptor Transitorio/metabolismo , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo
18.
J Gen Physiol ; 153(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34694360

RESUMEN

Cholangiocytes actively contribute to the final composition of secreted bile. These cells are exposed to abnormal mechanical stimuli during obstructive cholestasis, which has a deep impact on their function. However, the effects of mechanical insults on cholangiocyte function are not understood. Combining gene silencing and pharmacological assays with live calcium imaging, we probed molecular candidates essential for coupling mechanical force to ATP secretion in mouse cholangiocytes. We show that Piezo1 and Pannexin1 are necessary for eliciting the downstream effects of mechanical stress. By mediating a rise in intracellular Ca2+, Piezo1 acts as a mechanosensor responsible for translating cell swelling into activation of Panx1, which triggers ATP release and subsequent signal amplification through P2X4R. Co-immunoprecipitation and pull-down assays indicated physical interaction between Piezo1 and Panx1, which leads to stable plasma membrane complexes. Piezo1-Panx1-P2X4R ATP release pathway could be reconstituted in HEK Piezo1 KO cells. Thus, our data suggest that Piezo1 and Panx1 can form a functional signaling complex that controls force-induced ATP secretion in cholangiocytes. These findings may foster the development of novel therapeutic strategies for biliary diseases.


Asunto(s)
Adenosina Trifosfato , Conexinas , Células Epiteliales , Canales Iónicos , Proteínas del Tejido Nervioso , Animales , Calcio/metabolismo , Membrana Celular/metabolismo , Conexinas/genética , Células Epiteliales/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Transducción de Señal
19.
Cell Rep ; 37(5): 109914, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731626

RESUMEN

A variety of mechanosensory neurons are involved in touch, proprioception, and pain. Many molecular components of the mechanotransduction machinery subserving these sensory modalities remain to be discovered. Here, we combine recordings of mechanosensitive (MS) currents in mechanosensory neurons with single-cell RNA sequencing. Transcriptional profiles are mapped onto previously identified sensory neuron types to identify cell-type correlates between datasets. Correlation of current signatures with single-cell transcriptomes provides a one-to-one correspondence between mechanoelectric properties and transcriptomically defined neuronal populations. Moreover, a gene-expression differential comparison provides a set of candidate genes for mechanotransduction complexes. Piezo2 is expectedly found to be enriched in rapidly adapting MS current-expressing neurons, whereas Tmem120a and Tmem150c, thought to mediate slow-type MS currents, are uniformly expressed in all mechanosensory neuron subtypes. Further knockdown experiments disqualify them as mediating MS currents in sensory neurons. This dataset constitutes an open resource to explore further the cell-type-specific determinants of mechanosensory properties.


Asunto(s)
Ganglios Espinales/metabolismo , Perfilación de la Expresión Génica , Mecanotransducción Celular/genética , Neuronas/metabolismo , Transcriptoma , Animales , Ganglios Espinales/citología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Masculino , Potenciales de la Membrana , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Técnicas de Placa-Clamp , RNA-Seq , Análisis de la Célula Individual
20.
J Pain ; 22(4): 440-453, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33227509

RESUMEN

Oral amitriptyline hydrochloride (amitriptyline) is ineffective against some forms of chronic pain and is often associated with dose-limiting adverse events. We evaluated the potential effectiveness of high-dose topical amitriptyline in a preliminary case series of chemotherapy-induced peripheral neuropathy patients and investigated whether local or systemic adverse events associated with the use of amitriptyline were present in these patients. We also investigated the mechanism of action of topically administered amitriptyline in mice. Our case series suggested that topical 10% amitriptyline treatment was associated with pain relief in chemotherapy-induced peripheral neuropathy patients, without the side effects associated with systemic absorption. Topical amitriptyline significantly increased mechanical withdrawal thresholds when applied to the hind paw of mice, and inhibited the firing responses of C-, Aß- and Aδ-type peripheral nerve fibers in ex vivo skin-saphenous nerve preparations. Whole-cell patch-clamp recordings on cultured sensory neurons revealed that amitriptyline was a potent inhibitor of the main voltage-gated sodium channels (Nav1.7, Nav1.8, and Nav1.9) found in nociceptors. Calcium imaging showed that amitriptyline activated the transient receptor potential cation channel, TRPA1. Our case series indicated that high-dose 10% topical amitriptyline could alleviate neuropathic pain without adverse local or systemic effects. This analgesic action appeared to be mediated through local inhibition of voltage-gated sodium channels. PERSPECTIVE: Our preliminary case series suggested that topical amitriptyline could provide effective pain relief for chemotherapy-induced peripheral neuropathy patients without any systemic or local adverse events. Investigation of the mechanism of this analgesic action in mice revealed that this activity was mediated through local inhibition of nociceptor Nav channels.


Asunto(s)
Amitriptilina/farmacología , Analgésicos no Narcóticos/farmacología , Antineoplásicos/efectos adversos , Dolor Nociceptivo/tratamiento farmacológico , Nociceptores/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Canal Catiónico TRPA1/efectos de los fármacos , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Administración Tópica , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Amitriptilina/administración & dosificación , Amitriptilina/efectos adversos , Analgésicos no Narcóticos/administración & dosificación , Analgésicos no Narcóticos/efectos adversos , Animales , Conducta Animal/efectos de los fármacos , Niño , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Canal de Sodio Activado por Voltaje NAV1.7 , Canal de Sodio Activado por Voltaje NAV1.8 , Canal de Sodio Activado por Voltaje NAV1.9 , Bloqueadores del Canal de Sodio Activado por Voltaje/administración & dosificación , Bloqueadores del Canal de Sodio Activado por Voltaje/efectos adversos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA