RESUMEN
Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from â¼700 newly sequenced microorganisms and â¼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.
Asunto(s)
Metagenómica , Programas Informáticos , Algoritmos , Benchmarking , Análisis de Secuencia de ADNRESUMEN
MOTIVATION: Efficient and fast next-generation sequencing (NGS) algorithms are essential to analyze the terabytes of data generated by the NGS machines. A serious bottleneck can be the design of such algorithms, as they require sophisticated data structures and advanced hardware implementation. RESULTS: We propose an open-source library dedicated to genome assembly and analysis to fasten the process of developing efficient software. The library is based on a recent optimized de-Bruijn graph implementation allowing complex genomes to be processed on desktop computers using fast algorithms with low memory footprints. AVAILABILITY AND IMPLEMENTATION: The GATB library is written in C++ and is available at the following Web site http://gatb.inria.fr under the A-GPL license. CONTACT: lavenier@irisa.fr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.