Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 68(5): e0139023, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38546223

RESUMEN

Dihydroartemisinin-piperaquine is efficacious for the treatment of uncomplicated malaria and its use is increasing globally. Despite the positive results in fighting malaria, inhibition of the Kv11.1 channel (hERG; encoded by the KCNH2 gene) by piperaquine has raised concerns about cardiac safety. Whether genetic factors could modulate the risk of piperaquine-mediated QT prolongations remained unclear. Here, we first profiled the genetic landscape of KCNH2 variability using data from 141,614 individuals. Overall, we found 1,007 exonic variants distributed over the entire gene body, 555 of which were missense. By optimizing the gene-specific parametrization of 16 partly orthogonal computational algorithms, we developed a KCNH2-specific ensemble classifier that identified a total of 116 putatively deleterious missense variations. To evaluate the clinical relevance of KCNH2 variability, we then sequenced 293 Malian patients with uncomplicated malaria and identified 13 variations within the voltage sensing and pore domains of Kv11.1 that directly interact with channel blockers. Cross-referencing of genetic and electrocardiographic data before and after piperaquine exposure revealed that carriers of two common variants, rs1805121 and rs41314375, experienced significantly higher QT prolongations (ΔQTc of 41.8 ms and 61 ms, respectively, vs 14.4 ms in controls) with more than 50% of carriers having increases in QTc >30 ms. Furthermore, we identified three carriers of rare population-specific variations who experienced clinically relevant delayed ventricular repolarization. Combined, our results map population-scale genetic variability of KCNH2 and identify genetic biomarkers for piperaquine-induced QT prolongation that could help to flag at-risk patients and optimize efficacy and adherence to antimalarial therapy.


Asunto(s)
Antimaláricos , Artemisininas , Canal de Potasio ERG1 , Piperazinas , Quinolinas , Humanos , Canal de Potasio ERG1/genética , Antimaláricos/uso terapéutico , Antimaláricos/efectos adversos , Quinolinas/uso terapéutico , Quinolinas/efectos adversos , Artemisininas/uso terapéutico , Artemisininas/efectos adversos , Masculino , Femenino , Adulto , Malaria/tratamiento farmacológico , Electrocardiografía , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/inducido químicamente , Polimorfismo de Nucleótido Simple/genética
2.
Malar J ; 22(1): 136, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098534

RESUMEN

BACKGROUND: Measuring risk of malaria transmission is complex, especially in case of Plasmodium vivax. This may be overcome using membrane feeding assays in the field where P. vivax is endemic. However, mosquito-feeding assays are affected by a number of human, parasite and mosquito factors. Here, this study identified the contributions of Duffy blood group status of P. vivax-infected patients as a risk of parasite transmission to mosquitoes. METHODS: A membrane feeding assay was conducted on a total of 44 conveniently recruited P. vivax infected patients in Adama city and its surroundings in East Shewa Zone, Oromia region, Ethiopia from October, 2019 to January, 2021. The assay was performed in Adama City administration. Mosquito infection rates were determined by midgut dissections at seven to 8 days post-infection. Duffy genotyping was defined for each of the 44 P. vivax infected patients. RESULTS: The infection rate of Anopheles mosquitoes was 32.6% (296/907) with 77.3% proportion of infectious participants (34/44). Infectiousness of participants to Anopheles mosquitoes appeared to be higher among individuals with homozygous Duffy positive blood group (TCT/TCT) than heterozygous (TCT/CCT), but the difference was not statistically significant. The mean oocyst density was significantly higher among mosquitoes fed on blood of participants with FY*B/FY*BES than other genotypes (P = 0.001). CONCLUSION: Duffy antigen polymorphisms appears to contribute to transmissibility difference of P. vivax gametocytes to Anopheles mosquitoes, but further studies are required.


Asunto(s)
Anopheles , Antígenos de Grupos Sanguíneos , Malaria Vivax , Animales , Humanos , Plasmodium vivax/genética , Anopheles/parasitología , Malaria Vivax/epidemiología , Genotipo
3.
BMC Infect Dis ; 23(1): 405, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312065

RESUMEN

One of the key obstacles to malaria elimination is largely attributed to Plasmodium vivax's ability to form resilient hypnozoites in the host liver that cause relapsing infections. As a result, interruption of P. vivax transmission is difficult. P. vivax transmission occurs in Duffy-positive individuals and have been mainly thought to be absent in Africa. However, increasing studies using molecular tools detected P. vivax among Duffy-negative individuals in various African countries. Studies on the African P. vivax has been severely limited because most of malaria control program focus mainly on falciparum malaria. In addition, there is a scarcity of laboratory infrastructures to overcome the biological obstacles posed by P. vivax. Herein, we established field transmission of Ethiopian P. vivax for routine sporozoite supply followed by liver stage infection in Mali. Furthermore, we evaluated local P. vivax hypnozoites and schizonts susceptibilities to reference antimalarial drugs. The study enabled the assessment of local African P. vivax hypnozoite production dynamics. Our data displayed the ability of the African P. vivax to produce hypnozoite forms ex-vivo at different rates per field isolate. We report that while tafenoquine (1µM) potently inhibited both hypnozoites and schizont forms; atovaquone (0.25µM) and the phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691 (0.5µM) showed no activity against hypnozoites forms. Unlike hypnozoites forms, P. vivax schizont stages were fully susceptible to both atovaquone (0.25µM) and the (PI4K)-specific inhibitor KDU691 (0.5µM). Together, the data revealed the importance of the local platform for further biological investigation and implementation of drug discovery program on the African P. vivax clinical isolates.


Asunto(s)
Antimaláricos , Malaria Vivax , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium vivax , Atovacuona , Malaria Vivax/tratamiento farmacológico , Malí
4.
Antimicrob Agents Chemother ; 66(12): e0100122, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36321830

RESUMEN

The discovery and development of transmission-blocking therapies challenge malaria elimination and necessitate standard and reproducible bioassays to measure the blocking properties of antimalarial drugs and candidate compounds. Most of the current bioassays evaluating the transmission-blocking activity of compounds rely on laboratory-adapted Plasmodium strains. Transmission-blocking data from clinical gametocyte isolates could help select novel transmission-blocking candidates for further development. Using freshly collected Plasmodium falciparum gametocytes from asymptomatic individuals, we first optimized ex vivo culture conditions to improve gametocyte viability and infectiousness by testing several culture parameters. We next pre-exposed ex vivo field-isolated gametocytes to chloroquine, dihydroartemisinin, primaquine, KDU691, GNF179, and oryzalin for 48 h prior to direct membrane feeding. We measured the activity of the drug on the ability of gametocytes to resume the sexual life cycle in Anopheles after drug exposure. Using 57 blood samples collected from Malian volunteers aged 6 to 15 years, we demonstrate that the infectivity of freshly collected field gametocytes can be preserved and improved ex vivo in a culture medium supplemented with 10% horse serum at 4% hematocrit for 48 h. Moreover, our optimized drug assay displays the weak transmission-blocking activity of chloroquine and dihydroartemisinin, while primaquine and oryzalin exhibited a transmission-blocking activity of ~50% at 1 µM. KDU691 and GNF179 both interrupted Plasmodium transmission at 1 µM and 5 nM, respectively. This new approach, if implemented, has the potential to accelerate the screening of compounds with transmission-blocking activity.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Plasmodium falciparum , Primaquina , Malaria Falciparum/prevención & control , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico
5.
Malar J ; 21(1): 230, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915453

RESUMEN

BACKGROUND: The increase in detections of Plasmodium vivax infection in Duffy-negative individuals in Africa has challenged the dogma establishing the unique P. vivax Duffy Binding Protein-Duffy antigen receptor for chemokines (PvDBP-DARC) pathway used by P. vivax merozoites to invade reticulocytes. Information on the impact of Duffy antigen polymorphisms on the epidemiology of P. vivax malaria remains elusive. The objective of this study was to determine the distribution of asexual parasitaemia of P. vivax according to the Duffy antigen polymorphisms in Ethiopia. METHODS: DNA was extracted from dried blood spots (DBS) collected from prospectively recruited 138 P. vivax-infected patients from health centres. The identification and estimation of P. vivax asexual parasitaemia were performed by microscopic examination and quantitative real-time polymerase chain reaction (PCR). Duffy genotyping was conducted by DNA sequencing in a total of 138 P.vivax infected samples. RESULTS: The proportion of Duffy-negatives (FY*BES/FY*BES) in P. vivax infected patients was 2.9% (4/138). Duffy genotype FY*B/FY*BES (48.6%) was the most common, followed by FY*A/FY*BES genotype (25.4%). In one patient, the FY*02 W.01/FY*02 N.01 genotype conferring a weak expression of the Fyb antigen was observed. All P.vivax infected Duffy-negative patients showed low asexual parasitaemia (≤ 110 parasites/µL). The median P. vivax parasitaemia in Duffy-negative patients (53 parasites/µL) was significantly lower than those found in homozygous and heterozygous individuals (P < 0.0001). CONCLUSION: Plasmodium vivax in Duffy-negative patients shows invariably low asexual parasitaemia. This finding suggests that the pathway used by P. vivax to invade Duffy-negative reticulocytes is much less efficient than that used in Duffy-positives. Moreover, the low asexual parasitaemia observed in Duffy-negative individuals could constitute an 'undetected silent reservoir', thus likely delaying the elimination of vivax malaria in Ethiopia.


Asunto(s)
Malaria Vivax , Malaria , Sistema del Grupo Sanguíneo Duffy/genética , Etiopía/epidemiología , Humanos , Parasitemia/epidemiología , Plasmodium vivax/genética
6.
J Antimicrob Chemother ; 76(8): 2079-2087, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34021751

RESUMEN

OBJECTIVES: To evaluate Plasmodium malariae susceptibility to current and lead candidate antimalarial drugs. METHODS: We conducted cross-sectional screening and detection of all Plasmodium species malaria cases, which were nested within a longitudinal prospective study, and an ex vivo assessment of efficacy of a panel of antimalarials against P. malariae and Plasmodium falciparum, both PCR-confirmed mono-infections. Reference compounds tested included chloroquine, lumefantrine, artemether and piperaquine, while candidate antimalarials included the imidazolopiperazine GNF179, a close analogue of KAF156, and the Plasmodium phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691. RESULTS: We report a high frequency (3%-15%) of P. malariae infections with a significant reduction in ex vivo susceptibility to chloroquine, lumefantrine and artemether, which are the current frontline drugs against P. malariae infections. Unlike these compounds, potent inhibition of P. malariae and P. falciparum was observed with piperaquine exposure. Furthermore, we evaluated advanced lead antimalarial compounds. In this regard, we identified strong inhibition of P. malariae using GNF179, a close analogue of KAF156 imidazolopiperazines, which is a novel class of antimalarial drug currently in clinical Phase IIb testing. Finally, in addition to GNF179, we demonstrated that the Plasmodium PI4K-specific inhibitor KDU691 is highly inhibitory against P. malariae and P. falciparum. CONCLUSIONS: Our data indicated that chloroquine, lumefantrine and artemether may not be suitable for the treatment of P. malariae infections and the potential of piperaquine, as well as new antimalarials imidazolopiperazines and PI4K-specific inhibitor, for P. malariae cure.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Estudios Transversales , Humanos , Malaria Falciparum/tratamiento farmacológico , Malí , Plasmodium falciparum , Plasmodium malariae , Estudios Prospectivos
7.
Artículo en Inglés | MEDLINE | ID: mdl-33077656

RESUMEN

For a long while, 8-aminoquinoline compounds have been the only therapeutic agents against latent hepatic malaria parasites. These have poor activity against the blood-stage plasmodia causing acute malaria and must be used in conjunction with partner blood schizontocidal agents. We examined the impacts of one such agent, chloroquine, upon the activity of primaquine, an 8-aminoquinoline, against hepatic stages of Plasmodium cynomolgi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium falciparum within several ex vivo systems-primary hepatocytes of Macaca fascicularis, primary human hepatocytes, and stably transformed human hepatocarcinoma cell line HepG2. Primaquine exposures to formed hepatic schizonts and hypnozoites of P. cynomolgi in primary simian hepatocytes exhibited similar 50% inhibitory concentration (IC50) values near 0.4 µM, whereas chloroquine in the same system exhibited no inhibitory activities. Combining chloroquine and primaquine in this system decreased the observed primaquine IC50 for all parasite forms in a chloroquine dose-dependent manner by an average of 18-fold. Chloroquine also decreased the primaquine IC50 against hepatic P. falciparum in primary human hepatocytes, P. berghei in simian primary hepatocytes, and P. yoelii in primary human hepatocytes. Chloroquine had no impact on primaquine IC50 against P. yoelii in HepG2 cells and, likewise, had no impact on the IC50 of atovaquone (hepatic schizontocide) against P. falciparum in human hepatocytes. We describe important sources of variability in the potentiation of primaquine activity by chloroquine in these systems. Chloroquine potentiated primaquine activity against hepatic forms of several plasmodia. We conclude that chloroquine specifically potentiated 8-aminoquinoline activities against active and dormant hepatic-stage plasmodia in normal primary hepatocytes but not in a hepatocarcinoma cell line.


Asunto(s)
Antimaláricos , Malaria , Plasmodium , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico , Humanos , Malaria/tratamiento farmacológico , Primaquina/farmacología , Primaquina/uso terapéutico
8.
Proteomics ; 19(19): e1900021, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31444903

RESUMEN

A major obstacle impeding malaria research is the lack of an in vitro system capable of supporting infection through the entire liver stage cycle of the parasite, including that of the dormant forms known as hypnozoites. Primary hepatocytes lose their liver specific functions in long-term in vitro culture. The malaria parasite Plasmodium initiates infection in hepatocyte. This corresponds to the first step of clinically silent infection and development of malaria parasite Plasmodium in the liver. Thus, the liver stage is an ideal target for development of novel antimalarial interventions and vaccines. However, drug discovery against Plasmodium liver stage is severely hampered by the poor understanding of host-parasite interactions during the liver stage infection and development. In this study, tandem mass tag labeling based quantitative proteomic analysis is performed in simian primary hepatocytes cultured in three different systems of susceptibility to Plasmodium infection. The results display potential candidate molecular markers, including asialoglycoprotein receptor, apolipoproteins, squalene synthase, and scavenger receptor B1 (SR-BI) that facilitate productive infection and full development in relapsing Plasmodium species. The identification of these candidate proteins required for constructive infection and development of hepatic malaria liver stages paves the way to explore them as therapeutic targets.


Asunto(s)
Hepatocitos/metabolismo , Malaria/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Animales , Células Cultivadas , Cromatografía Liquida , Hepatocitos/parasitología , Interacciones Huésped-Parásitos , Humanos , Macaca fascicularis , Malaria/parasitología , Plasmodium/fisiología , Proteoma/genética , Espectrometría de Masas en Tándem
9.
Artículo en Inglés | MEDLINE | ID: mdl-29530849

RESUMEN

Artemisinin (ART) resistance has spread through Southeast Asia, posing a serious threat to the control and elimination of malaria. ART resistance has been associated with mutations in the Plasmodium falciparum kelch-13 (Pfk13) propeller domain. Phenotypically, ART resistance is defined as delayed parasite clearance in patients due to the reduced susceptibility of early ring-stage parasites to the active metabolite of ART dihydroartemisinin (DHA). Early rings can enter a state of quiescence upon DHA exposure and resume growth in its absence. These quiescent rings are referred to as dormant rings or DHA-pretreated rings (here called dormant rings). The imidazolopiperazines (IPZ) are a novel class of antimalarial drugs that have demonstrated efficacy in early clinical trials. Here, we characterized the stage of action of the IPZ GNF179 and evaluated its activity against rings and dormant rings in wild-type and ART-resistant parasites. Unlike DHA, GNF179 does not induce dormancy. We show that GNF179 is more rapidly cidal against schizonts than against ring and trophozoite stages. However, with 12 h of exposure, the compound effectively kills rings and dormant rings of both susceptible and ART-resistant parasites within 72 h. We further demonstrate that in combination with ART, GNF179 effectively prevents recrudescence of dormant rings, including those bearing pfk13 propeller mutations.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Imidazoles/farmacología , Piperazinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Esquizontes/efectos de los fármacos , Esquizontes/metabolismo , Trofozoítos/efectos de los fármacos , Trofozoítos/metabolismo
10.
Parasite ; 31: 36, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953782

RESUMEN

Schistosomiasis is of medical and veterinary importance. Despite the critical situation of schistosomiasis in sub-Saharan Africa, few molecular epidemiological studies have been carried out to determine the role of animals in its transmission. In Mali, it has been over three decades since the last molecular study of animal schistosomes was carried out. It is now urgent to identify circulating strains of the parasite because of potential interactions with other schistosome species, which could complicate disease control. The aim of our work was to study the composition and genetic structure of schistosome populations collected from cattle. The prevalence of schistosome was 23.9%, with the prevalences of Schistosoma bovis (Sb) and S. curassoni (Sc) estimated at 12.6% and 9.8%, respectively. No hybrid strains or S. haematobium were found. The parasites displayed distinct geographical distribution with Sb dominant in Bamako (78.8% and 98% in Central Bamako Slaughterhouse and Sabalibougou Slaughterhouses, respectively) and Sc dominant in Kayes (95.3%). Of the 476 parasites with a complete genetic profile, 60.4% were pure Sc, and were mainly from Kayes. We identified two clusters at the site level (Fst of 0.057 and 0.042 for Sb and Sc, respectively). Cluster 1 was predominantly composed of pure Sb parasites and cluster 2 was mainly composed of pure Sc parasites, from Bamako and Kayes, respectively. Our study shows that cattle schistosomiasis remains endemic in Mali with S. bovis and S. curassoni. A robust genetic structure between the different schistosome populations was identified, which included two clusters based on the geographical distribution of the parasites.


Title: Structure génétique des populations de Schistosoma bovis et S. curassoni collectées chez des bovins au Mali. Abstract: La schistosomiase revêt une grande importance médicale et vétérinaire. Malgré la situation critique de la schistosomiase en Afrique subsaharienne, peu d'études épidémiologiques moléculaires ont été réalisées pour déterminer le rôle des animaux dans sa transmission. Au Mali, cela fait plus de trois décennies que la dernière étude moléculaire des schistosomes animaux a été réalisée. Il est désormais urgent d'identifier les souches circulantes du parasite en raison des interactions potentielles avec d'autres espèces de schistosomes, ce qui pourrait compliquer la lutte contre la maladie. Le but de notre travail était d'étudier la composition et la structure génétique des populations de schistosomes collectées chez des bovins. La prévalence des schistosomes était de 23,9 %, celles de Schistosoma bovis (Sb) et de S. curassoni (Sc) étant respectivement estimées à 12,6 % et 9,8 %. Aucune souche hybride ni S. haematobium n'ont été trouvés. Les parasites présentaient une répartition géographique distincte avec Sb dominant à Bamako (respectivement 78,8 % et 98 % aux Abattoirs Centraux de Bamako et aux Abattoirs de Sabalibougou) et Sc dominant à Kayes (95,3 %). Sur les 476 parasites ayant un profil génétique complet, 60,4 % étaient des Sc purs, et provenaient principalement de Kayes. Nous avons identifié deux clusters au niveau du site (Fst de 0,057 et 0,042 pour Sb et Sc, respectivement). Le groupe 1 était principalement composé de parasites Sb purs et le groupe 2 était principalement composé de parasites Sc purs, provenant respectivement de Bamako et de Kayes. Notre étude montre que la schistosomiase bovine reste endémique au Mali, avec S. bovis and S. curassoni. Une structure génétique robuste entre les différentes populations de schistosomes a été identifiée, comprenant deux groupes basés sur la répartition géographique des parasites.


Asunto(s)
Enfermedades de los Bovinos , Schistosoma , Esquistosomiasis , Animales , Bovinos , Malí/epidemiología , Schistosoma/genética , Schistosoma/clasificación , Schistosoma/aislamiento & purificación , Enfermedades de los Bovinos/parasitología , Enfermedades de los Bovinos/epidemiología , Esquistosomiasis/veterinaria , Esquistosomiasis/epidemiología , Esquistosomiasis/parasitología , Esquistosomiasis/transmisión , Prevalencia , Variación Genética , Genética de Población , ADN de Helmintos/genética
11.
Infect Dis Poverty ; 13(1): 62, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39198901

RESUMEN

BACKGROUND: Mali is known to be a schistosomiasis-endemic country with a limited supply of clean water. This has forced many communities to rely on open freshwater bodies for many human-water contact (HWC) activities. However, the relationship between contact with these water systems and the level of schistosome infection is currently receiving limited attention. This study assessed human-water interactions including cercarial emergence pattern and their influences on urinary schistosomiasis transmission in two communities in the Kayes district of Mali. METHODS: We carried out a parasitological study first in children in September 2021, then a cross-sectional study of quantitative observations of human-water contact activities in the population, and finally a study of snail infectivity at contact points in September 2022. The study took place in two communities, Fangouné Bamanan and Diakalèl in the Kayes region of western Mali. The chronobiological study focused on cercarial release from naturally infected snails. Released cercariae were molecularly genotyped by targeting the cox1 region, and the ITS and 18S ribosmal DNA gene (18S rDNA) regions of the DNA. Links between sociodemographic parameters, human water-contact points and hematuria were established using multivariate statistical analysis or the logistic regression model. RESULTS: The main factor predisposing the 97 participants to water contact was domestic activity (62.9%). Of the 378 snails collected at 14 sampling sites, 27 (7.1%) excreted schistosome cercariae, with 15.0% (19/126) at Fangouné Bamanan and 3.3% (8/252) at Diakalel. The release of Schistosoma cercariae shows three different patterns in Fangouné Bamanan: (i) an early release peak (6:00-8:00 AM), (ii) a mid-day release peak (10:00 AM-12:00 PM) and (iii) a double peak: (6:00-8:00 AM) and (6:00-8:00 PM) cercariae release; and two release patterns in Diakalel: early release (6:00-8:00 AM) and (ii) mid-day release (12:00-2:00 PM). All cercariae released during early diurnal (6:00-8:00 AM) or nocturnal emission patterns (6:00-8:00 PM) were hybrids parasite having an cox1 S. bovis or S. curassoni associated with an ITS and 18S rDNA of S. haematobium while the cercariae released during diurnal, or mid-day patterns (8:00 AM-6:00 PM) were pure S. haematobium. CONCLUSIONS: Our study showed that domestic activity is the main source of exposure in the Kayes region. Two and three cercariae emission patterns were observed at Diakalel and Fangouné Bamanan respectively. These results suggest that the parasite adapts to the human-water contact period in order to increase its infectivity.


Asunto(s)
Cercarias , Schistosoma haematobium , Esquistosomiasis Urinaria , Humanos , Malí/epidemiología , Animales , Esquistosomiasis Urinaria/transmisión , Esquistosomiasis Urinaria/epidemiología , Esquistosomiasis Urinaria/parasitología , Niño , Masculino , Cercarias/fisiología , Estudios Transversales , Femenino , Adolescente , Schistosoma haematobium/fisiología , Schistosoma haematobium/genética , Caracoles/parasitología , Preescolar , Adulto , Agua/parasitología
12.
Nat Commun ; 15(1): 7659, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227370

RESUMEN

The selection and combination of dose regimens for antimalarials involve complex considerations including pharmacokinetic and pharmacodynamic interactions. In this study, we use immediate ex vivo P. falciparum field isolates to evaluate the effect of cabamiquine and pyronaridine as standalone treatments and in combination therapy. We feed the data into a pharmacometrics model to generate an interaction map and simulate meaningful clinical dose ratios. We demonstrate that the pharmacometrics model of parasite growth and killing provides a detailed description of parasite kinetics against cabamiquine-susceptible and resistant parasites. Pyronaridine monotherapy provides suboptimal killing rates at doses as high as 720 mg. In contrast, the combination of a single dose of 330 mg cabamiquine and 360 mg pyronaridine provides over 90% parasite killing in most of the simulated patients. The described methodology that combines a rapid, 3R-compliant in vitro method and modelling to set meaningful doses for new antimalarials could contribute to clinical drug development.


Asunto(s)
Antimaláricos , Malaria Falciparum , Naftiridinas , Plasmodium falciparum , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/administración & dosificación , Antimaláricos/farmacocinética , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Naftiridinas/administración & dosificación , Naftiridinas/farmacología , Naftiridinas/farmacocinética , Quimioterapia Combinada , Relación Dosis-Respuesta a Droga , Resistencia a Medicamentos/efectos de los fármacos
13.
Genes (Basel) ; 14(12)2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38136946

RESUMEN

Imidazolopiperazine (IPZ), KAF156, a close analogue of GNF179, is a promising antimalarial candidate. IPZ is effective against Plasmodium falciparum and Plasmodium vivax clinical malaria in human with transmission blocking property in animal models and effective against liver stage parasites. Despite these excellent drug efficacy properties, in vitro parasites have shown resistance to IPZ. However, the mechanism of action and resistance of IPZ remained not fully understood. Here, we used transcriptomic analysis to elucidate mode of action of IPZs. We report, in wild-type parasites GNF179 treatment down regulated lipase enzymes, two metabolic pathways: the hydrolysis of Phosphoinositol 4,5-bipohosphate (PIP2) that produce diacyglycerol (DAG) and the cytosolic calcium Ca2+ homeostasis which are known to be essential for P. falciparum survival and proliferation, as well for membrane permeability and protein trafficking. Furthermore, in wild-type parasites, GNF179 repressed expression of Acyl CoA Synthetase, export lipase 1 and esterase enzymes. Thus, in wild-type parasites only, GNF179 treatment affected enzymes leading lipid metabolism, transport, and synthesis. Lastly, our data revealed that IPZs did not perturb known IPZ resistance genes markers pfcarl, pfact, and pfugt regulations, which are all instead possibly involved in the drug resistance that disturb membrane transport targeted by IPZ.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Parásitos , Animales , Humanos , Plasmodium falciparum , Malaria Falciparum/parasitología , Perfilación de la Expresión Génica , Lipasa/metabolismo
14.
Parasit Vectors ; 16(1): 263, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542265

RESUMEN

BACKGROUND: Although schistosomiasis is a public health issue in Mali, little is known about the parasite genetic profile. The purpose of this study was to analyze the genetic profile of the schistosomes of Schistosoma haematobium group in school-aged children in various sites in Mali. METHODS: Urine samples were collected from 7 to 21 November 2021 and subjected to a filtration method for the presence S. haematobium eggs. The study took place in two schistosomiasis endemic villages (Fangouné Bamanan and Diakalèl), qualified as hotspots according to the World Health Organization (WHO) definition. Molecular genotyping on both Cox1 and ITS2/18S was used for eggs' taxonomic assignation. RESULTS: A total of 970 miracidia were individually collected from 63 school-aged children and stored on Whatman FTA cards for molecular analysis. After genotyping 42.0% (353/840) and 58.0% (487/840) of miracidia revealed Schistosoma bovis and S. haematobium Cox1 profiles, respectively; 95.7 (885/925) and 4.3% (40/925) revealed S. haematobium and S. haematobium/S. curassoni profiles for ITS/18S genes, respectively. There was a significant difference in the Cox1 and ITS2/18S profile distribution according to the village (P < 0.0001). Overall, 45.6% (360/789) were hybrids, of which 72.0% (322/447) were from Diakalèl. Three hybrids' profiles (Sb/Sc_ShxSc with 2.3%; Sb/Sc_ShxSh with 40.5%; Sh_ShxSc with 2.8%) and one pure profile (Sh_ShxSh with 54.4%) were identified. CONCLUSION: Our findings show, for the first time to our knowledge, high prevalence of hybrid schistosomes in Mali. More studies are needed on population genetics of schistosomes at the human and animal interface to evaluate the parasite's gene flow and its consequences on epidemiology of the disease as well as the transmission to humans.


Asunto(s)
Parásitos , Esquistosomiasis Urinaria , Esquistosomiasis , Niño , Animales , Humanos , Schistosoma haematobium/genética , Punto Alto de Contagio de Enfermedades , Perfil Genético , Schistosoma/genética , Esquistosomiasis/epidemiología
15.
Microbiol Spectr ; 11(3): e0491622, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37093000

RESUMEN

Malaria treatments resulted in the decline of the deadliest Plasmodium falciparum globally while species, such as P. ovale, infections have been increasingly detected across sub-Saharan Africa. Currently, no experimental drug sensitivity data are available to guide effective treatment and management of P. ovale infections, which is necessary for effective malaria elimination. We conducted a prospective study to evaluate P. ovale epidemiology over 1 year and determined ex vivo susceptibility of the field isolates to existing and lead advanced discovery antimalarial drugs. We report that while P. falciparum dominated both symptomatic and asymptomatic malaria cases, P. ovale in mono or co-infections caused 7.16% of symptomatic malaria. Frontline antimalarials artesunate and lumefantrine inhibited P. ovale as potently as P. falciparum. Chloroquine, which has been withdrawn in Ghana, was also highly inhibitory against both P. ovale and P. falciparum. In addition, P. ovale and P. falciparum displayed high susceptibility to quinine, comparable to levels observed with chloroquine. Pyrimethamine, which is a major drug for disease massive prevention, also showed great inhibition of P. ovale, comparable to effects on P. falciparum. Furthermore, we identified strong inhibition of P. ovale using GNF179, a close analogue of KAF156 imidazolopiperazines, which is a novel class of antimalarial drugs currently in clinical phase II testing. We further demonstrated that the Plasmodium phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor, KDU691, is highly inhibitory against P. ovale and P. falciparum field isolates. Our data indicated that existing and lead advanced discovery antimalarial drugs are suitable for the treatment of P. ovale infections in Ghana. IMPORTANCE Current malaria control and elimination tools such as drug treatments are not specifically targeting P.ovale. P. ovale can form hypnozoite and cause relapsing malaria. P. ovale is the third most dominant species in Africa and requires radical cure treatment given that it can form liver dormant forms called hypnozoites that escape all safe treatments. The inappropriate treatment of P. ovale would sustain its transmission in Africa where the medical need is the greatest. This is a hurdle for successful malaria control and elimination. Here, we provided experiment data that were lacking to guide P. ovale treatment and disease control policy makers using reference antimalarial drugs. We also provided key experimental data for 2 clinical candidate drugs that can be used for prioritization selection of lead candidate's identification for clinical development.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Plasmodium ovale , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Ghana/epidemiología , Estudios Prospectivos , Malaria/epidemiología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Cloroquina/farmacología , Cloroquina/uso terapéutico
16.
Nat Commun ; 14(1): 5205, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626093

RESUMEN

We report an analysis of the propensity of the antimalarial agent cabamiquine, a Plasmodium-specific eukaryotic elongation factor 2 inhibitor, to select for resistant Plasmodium falciparum parasites. Through in vitro studies of laboratory strains and clinical isolates, a humanized mouse model, and volunteer infection studies, we identified resistance-associated mutations at 11 amino acid positions. Of these, six (55%) were present in more than one infection model, indicating translatability across models. Mathematical modelling suggested that resistant mutants were likely pre-existent at the time of drug exposure across studies. Here, we estimated a wide range of frequencies of resistant mutants across the different infection models, much of which can be attributed to stochastic differences resulting from experimental design choices. Structural modelling implicates binding of cabamiquine to a shallow mRNA binding site adjacent to two of the most frequently identified resistance mutations.


Asunto(s)
Antimaláricos , Parásitos , Animales , Ratones , Antimaláricos/farmacología , Aminoácidos , Sitios de Unión , Modelos Animales de Enfermedad
17.
Trop Med Infect Dis ; 8(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37755899

RESUMEN

Up-to-date knowledge of key epidemiological aspects of each Plasmodium species is necessary for making informed decisions on targeted interventions and control strategies to eliminate each of them. This study aims to describe the epidemiology of plasmodial species in Mali, where malaria is hyperendemic and seasonal. Data reports collected during high-transmission season over six consecutive years were analyzed to summarize malaria epidemiology. Malaria species and density were from blood smear microscopy. Data from 6870 symptomatic and 1740 asymptomatic participants were analyzed. The median age of participants was 12 years, and the sex ratio (male/female) was 0.81. Malaria prevalence from all Plasmodium species was 65.20% (95% CI: 60.10-69.89%) and 22.41% (CI: 16.60-28.79%) for passive and active screening, respectively. P. falciparum was the most prevalent species encountered in active and passive screening (59.33%, 19.31%). This prevalence was followed by P. malariae (1.50%, 1.15%) and P. ovale (0.32%, 0.06%). Regarding frequency, P. falciparum was more frequent in symptomatic individuals (96.77% vs. 93.24%, p = 0.014). In contrast, P. malariae was more frequent in asymptomatic individuals (5.64% vs. 2.45%, p < 0.001). P. ovale remained the least frequent species (less than 1%), and no P. vivax was detected. The most frequent coinfections were P. falciparum and P. malariae (0.56%). Children aged 5-9 presented the highest frequency of P. falciparum infections (41.91%). Non-falciparum species were primarily detected in adolescents (10-14 years) with frequencies above 50%. Only P. falciparum infections had parasitemias greater than 100,000 parasites per µL of blood. P. falciparum gametocytes were found with variable prevalence across age groups. Our data highlight that P. falciparum represented the first burden, but other non-falciparum species were also important. Increasing attention to P. malariae and P. ovale is essential if malaria elimination is to be achieved.

18.
Microbiol Spectr ; 10(5): e0062822, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36066239

RESUMEN

The membrane feeding assay is widely used to evaluate the efficacy of transmission-blocking interventions (TBIs) and identify the reservoir of malaria. This study aimed to determine the infectivity of blood meals from symptomatic Plasmodium-infected patients to an Anopheles arabiensis colony in Ethiopia. A membrane feeding assay was conducted on a total of 63 Plasmodium falciparum- and/or Plasmodium vivax-infected clinical patients in East Shoa Zone, Ethiopia. Detection of P. falciparum and P. vivax in blood samples was done using microscopy. Mosquito infection rates were determined by dissection of mosquitoes' midguts, while mosquito infectiousness was observed by dissection of their salivary glands. The proportion of infectious symptomatic patients was 68.3% (43/63). Using the chi-square or Fisher's exact test, the oocyst infection levels were higher among patients infected with P. vivax, females, and rural residents. Nearly 57% (56.7%, 17/30) of assays produced sporozoites in the salivary glands of mosquitoes. Both oocyst and sporozoite infection rates had positive correlations with parasitemia and gametocytemia. High infectiousness of symptomatic patients was observed, with a greater proportion of infectious mosquitoes per assay. Demonstrating oocyst infection in the mosquitoes might confirm estimates of the infectiousness of mosquitoes, although some of the oocyst-infected mosquitoes failed to produce sporozoites. IMPORTANCE Malaria remains one of the most devastating infectious diseases globally, and transmission-blocking activities are needed. Plasmodium transmission from human to mosquitoes is poorly studied, particularly in endemic countries, and the membrane feeding assay allows it to be determined. In this study, we demonstrated human infectious reservoirs of malaria. Moreover, the effect of Plasmodium-infected patients on the infectiousness of mosquitoes was also observed. These findings are therefore important for designing future evaluation of transmission-blocking interventions that will support the malaria elimination program.


Asunto(s)
Anopheles , Malaria Falciparum , Malaria Vivax , Malaria , Animales , Femenino , Humanos , Etiopía/epidemiología , Plasmodium vivax , Malaria Vivax/epidemiología , Plasmodium falciparum , Malaria Falciparum/epidemiología , Oocistos
19.
ACS Infect Dis ; 7(11): 3025-3033, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34711047

RESUMEN

In vitro and ex vivo cultivation of Plasmodium (P) falciparum has facilitated active research into the malaria parasite toward the quest for basic knowledge and the discovery of effective drug treatments. Such a drug discovery program is currently difficult for P. malariae simply because of the absence of in vitro and ex vivo cultivation system for its asexual blood stages supporting antimalarial evaluation. Despite availability of artemisinin combination therapies effective on P. falciparum, P. malariae is being increasingly detected in malaria endemic countries. P. malariae is responsible for chronic infections and is associated with a high burden of anemia and morbidity. Here, we optimized and adapted ex vivo conditions under which P. malariae can be cultured and used for screening antimalarial drugs. Subsequently, this enabled us to test compounds such as artemether, chloroquine, lumefantrine, and quinine for ex vivo antimalarial activity against P. malariae.


Asunto(s)
Antimaláricos , Malaria Falciparum , Antimaláricos/farmacología , Humanos , Lumefantrina/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum , Plasmodium malariae
20.
Parasitol Int ; 84: 102415, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34216801

RESUMEN

The recent World Malaria report shows that progress in malaria elimination has stalled. Current data acquisition by NMCPs depend on passive case detection and clinical reports focused mainly on Plasmodium falciparum (Pf). In recent times, several countries in sub-Saharan Africa have reported cases of Plasmodium vivax (Pv) with a considerable number being Duffy negative. The burden of Pv and Plasmodium ovale (Po) appear to be more than acknowledged. Similarly, the contribution of asymptomatic malaria in transmission is hardly considered by NMCPs in Africa. Inclusion of these as targets in malaria elimination agenda is necessary to achieve elimination goal, as these harbor hypnozoites. The Pan African Vivax and Ovale Network (PAVON) is a new consortium of African Scientists working in Africa on the transmission profile of Pv and Po. The group collaborates with African NMCPs to train in Plasmodium molecular diagnostics, microscopy, and interpretation of molecular data from active surveys to translate into policy. Details of the mission, rational and modus operandi of the group are outlined.


Asunto(s)
Malaria , Plasmodium ovale , Plasmodium vivax , África , Infecciones Asintomáticas/epidemiología , Malaria/epidemiología , Malaria/parasitología , Malaria/prevención & control , Malaria/transmisión , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Malaria Vivax/prevención & control , Malaria Vivax/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA