Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 193(3): 2071-2085, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37052181

RESUMEN

In a continuously changing and challenging environment, passing down the memory of encountered stress factors to offspring could provide an evolutionary advantage. In this study, we demonstrate the existence of "intergenerational acquired resistance" in the progeny of rice (Oryza sativa) plants attacked by the belowground parasitic nematode Meloidogyne graminicola. Transcriptome analyses revealed that genes involved in defense pathways are generally downregulated in progeny of nematode-infected plants under uninfected conditions but show a stronger induction upon nematode infection. This phenomenon was termed "spring loading" and depends on initial downregulation by the 24-nucleotide (nt) siRNA biogenesis gene dicer-like 3a (dcl3a) involved in the RNA-directed DNA methylation pathway. Knockdown of dcl3a led to increased nematode susceptibility and abolished intergenerational acquired resistance, as well as jasmonic acid/ethylene spring loading in the offspring of infected plants. The importance of ethylene signaling in intergenerational resistance was confirmed by experiments on a knockdown line of ethylene insensitive 2 (ein2b), which lacks intergenerational acquired resistance. Taken together, these data indicate a role for DCL3a in regulating plant defense pathways during both within-generation and intergenerational resistance against nematodes in rice.


Asunto(s)
Oryza , Tylenchoidea , Animales , Oryza/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Etilenos/metabolismo , Tylenchoidea/fisiología , Hormonas/metabolismo , Raíces de Plantas/metabolismo
2.
Environ Sci Technol ; 58(3): 1577-1588, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38194437

RESUMEN

Antarctica, protected by its strong polar vortex and sheer distance from anthropogenic activity, was always thought of as pristine. However, as more data on the occurrence of persistent organic pollutants on Antarctica emerge, the question arises of how fast the long-range atmospheric transport takes place. Therefore, polycyclic aromatic hydrocarbons (PAHs) and oxygenated (oxy-)PAHs were sampled from the atmosphere and measured during 4 austral summers from 2017 to 2021 at the Princess Elisabeth station in East Antarctica. The location is suited for this research as it is isolated from other stations and activities, and the local pollution of the station itself is limited. A high-volume sampler was used to collect the gas and particle phase (PM10) separately. Fifteen PAHs and 12 oxy-PAHs were quantified, and concentrations ranging between 6.34 and 131 pg m3 (Σ15PAHs-excluding naphthalene) and between 18.8 and 114 pg m3 (Σ13oxy-PAHs) were found. Phenanthrene, pyrene, and fluoranthene were the most abundant PAHs. The gas-particle partitioning coefficient log(Kp) was determined for 6 compounds and was found to lie between 0.5 and -2.5. Positive matrix factorization modeling was applied to the data set to determine the contribution of different sources to the observed concentrations. A 6-factor model proved a good fit to the data set and showed strong variations in the contribution of different air masses. During the sampling campaign, a number of volcanic eruptions occurred in the southern hemisphere from which the emission plume was detected. The FLEXPART dispersion model was used to confirm that the recorded signal is indeed influenced by volcanic eruptions. The data was used to derive a transport time of between 11 and 33 days from release to arrival at the measurement site on Antarctica.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Regiones Antárticas , Contaminación Ambiental
3.
J Environ Manage ; 367: 121968, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068787

RESUMEN

Volatile organic compounds (VOCs) emitted into the atmosphere negatively affect the environment and human health. Biotrickling filtration, an effective technology for treating VOC-laden waste gases, faces challenges in removing hydrophobic VOCs due to their low water solubility and therefore limited bioavailability to microorganisms. Consequently, the addition of (bio)surfactants has proven to be a promising strategy to enhance the removal of hydrophobic VOCs in biotrickling filters (BTFs). Yet, up to now, no single study has ever performed a mass transfer characterization of a BTF under (bio)surfactants addition. In this study, the effect of (bio)surfactant addition on the gas-liquid mass transfer characteristics of two BTFs was measured by using oxygen (O2) as a model gas. Through an empirical correlation, the mass transfer coefficients (kLa) of two hydrophobic VOCs, toluene and hexane, which are of industrial and environmental significance, were estimated. One BTF was filled with expanded perlite, while the other with a mixture of compost and wood chips (C + WC). Both BTFs were operated under different liquid velocities (UL: 0.95 and 1.53 m h-1). Saponin, a biological surfactant, and Tween 80, a synthetic surfactant, were added to the recirculating liquid at different critical micelle concentrations (CMCs: 0-3 CMC). The higher interfacial and surface area of the perlite BTF compared to the C + WC BTF led to higher kLaO2 values regardless of the operational condition: 308 ± 18-612 ± 19 h-1 versus 42 ± 4-177 ± 24 h-1, respectively. Saponin addition at 0.5 and 1 CMC had positive effects on the perlite BTF, with kLaO2 values two times higher compared to those at 0 CMC. Tween 80 exhibited a neutral or slightly positive effect on the mass transfer of both BTFs under all conditions. Overall, the CMC, along with the physical characteristics of the packing materials and the operational conditions evaluated explained the results obtained. This study provides fundamental data essential to improve the performance and design of BTFs for hydrophobic VOCs abatement.

4.
J Environ Manage ; 353: 120132, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38286067

RESUMEN

The removal of volatile organic compounds (VOCs) in air is of utmost importance to safeguard both environmental quality and human well-being. However, the low aqueous solubility of hydrophobic VOCs results in poor removal in waste gas biofilters (BFs). In this study, we evaluated the addition of (bio)surfactants in three BFs (BF1 and BF2 mixture of compost and wood chips (C + WC), and BF3 filled with expanded perlite) to enhance the removal of cyclohexane and hexane from a polluted gas stream. Experiments were carried out to select two (bio)surfactants (i.e., Tween 80 and saponin) out of five (sodium dodecyl sulfate (SDS), Tween 80, surfactin, rhamnolipid and saponin) from a physical-chemical (i.e., decreasing VOC gas-liquid partitioning) and biological (i.e., the ability of the microbial consortium to grow on the (bio)surfactants) point of view. The results show that adding Tween 80 at 1 critical micelle concentration (CMC) had a slight positive effect on the removal of both VOCs, in BF1 (e.g., 7.0 ± 0.6 g cyclohexane m-3 h-1, 85 ± 2% at 163 s; compared to 6.7 ± 0.4 g cyclohexane m-3 h-1, 76 ± 2% at 163 s and 0 CMC) and BF2 (e.g., 4.3 ± 0.4 g hexane m-3 h-1, 27 ± 2% at 82 s; compared to 3.1 ± 0.7 g hexane m-3 h-1, 16 ± 4% at 82 s and 0 CMC), but a negative effect in BF3 at either 1, 3 and 9 CMC (e.g., 2.4 ± 0.4 g hexane m-3 h-1, 30 ± 4% at 163 s and 1 CMC; compared to 4.6 ± 1.0 g hexane m-3 h-1, 43 ± 8% at 163 s and 0 CMC). In contrast, the performance of all BFs improved with the addition of saponin, particularly at 3 CMC. Notably, in BF3, the elimination capacity (EC) and removal efficiency (RE) doubled for both VOCs (i.e., 9.1 ± 0.6 g cyclohexane m-3 h-1, 49 ± 3%; 4.3 ± 0.3 g hexane m-3 h-1, 25 ± 3%) compared to no biosurfactant addition (i.e., 4.5 ± 0.4 g cyclohexane m-3 h-1, 23 ± 3%; hexane 2.2 ± 0.5 g m-3 h-1, 10 ± 2%) at 82 s. Moreover, the addition of the (bio)surfactants led to a shift in the microbial consortia, with a different response in BF1-BF2 compared to BF3. This study evaluates for the first time the use of saponin in BFs, it demonstrates that cyclohexane and hexane RE can be improved by (bio)surfactant addition, and it provides recommendations for future studies in this field.


Asunto(s)
Saponinas , Compuestos Orgánicos Volátiles , Humanos , Tensoactivos/química , Hexanos , Polisorbatos , Ciclohexanos , Filtración/métodos
5.
J Exp Bot ; 71(14): 4271-4284, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32242224

RESUMEN

Ascorbic acid (AA) is the major antioxidant buffer produced in the shoot tissue of plants. Previous studies on root-knot nematode (RKN; Meloidogyne graminicola)-infected rice (Oryza sativa) plants showed differential expression of AA-recycling genes, although their functional role was unknown. Our results confirmed increased dehydroascorbate (DHA) levels in nematode-induced root galls, while AA mutants were significantly more susceptible to nematode infection. External applications of ascorbate oxidase (AO), DHA, or reduced AA, revealed systemic effects of ascorbate oxidation on rice defence versus RKN, associated with a primed accumulation of H2O2 upon nematode infection. To confirm and further investigate these systemic effects, a transcriptome analysis was done on roots of foliar AO-treated plants, revealing activation of the ethylene (ET) response and jasmonic acid (JA) biosynthesis pathways in roots, which was confirmed by hormone measurements. Activation of these pathways by methyl-JA, or ethephon treatment can complement the susceptibility phenotype of the rice Vitamin C (vtc1) mutant. Experiments on the jasmonate signalling (jar1) mutant or using chemical JA/ET inhibitors confirm that the effects of ascorbate oxidation are dependent on both the JA and ET pathways. Collectively, our data reveal a novel pathway in which ascorbate oxidation induces systemic defence against RKNs.


Asunto(s)
Oryza , Tylenchoidea , Animales , Ácido Ascórbico , Peróxido de Hidrógeno , Enfermedades de las Plantas , Raíces de Plantas
6.
J Environ Manage ; 254: 109752, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31733478

RESUMEN

Awareness about the rising detection and reported (eco)toxicological effects of contaminants of emerging concern (CECs, e.g. pharmaceuticals and personal care products - PPCPs - and modern pesticides) in the aquatic environment is growing. CECs are increasingly reported in the African aquatic environment, although the amount of data available is still limited. In this work, a comprehensive review is presented on the occurrence of CECs in wastewater, sludge, surface water, sediment, groundwater and drinking water of Africa. Further attention is given to the performance of wastewater stabilization ponds (WSPs) and trickling filters (TF) with respect to CECs removal. For the first time, we also look at the state of knowledge on the performance of point-of-use technologies (POUs) regarding the removal of CECs in drinking water. Generally, CECs in Africa occur at the same order of magnitude as in the Western world. However, for particular groups of compounds and at specific locations such as informal settlements, clearly higher concentrations are reported in Africa. Whereas antiretroviral and antimalarial drugs are rarely detected in the Western world, occurrence patterns in Africa reveal concentrations up to >100 µg L-1. Removal efficiencies of WSPs and TFs focus mainly on PPCPs and vary significantly, ranging from no removal (e.g. carbamazepine) to better than 99.9% (e.g. paracetamol). Despite the rising adoption of POUs, limited but promising information is available on their performance regarding CECs treatment in drinking water, particularly for the low-cost devices (e.g. ceramic filters and solar disinfection - SODIS) being adopted in Africa and other developing countries.


Asunto(s)
Plaguicidas , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , África , Monitoreo del Ambiente , Aguas Residuales
7.
Water Sci Technol ; 81(12): 2606-2616, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32857747

RESUMEN

Surrogate measurements based on excitation-emission matrix fluorescence spectra (EEMs) and ultraviolet-visible absorption spectra (UV-vis) were used to monitor the evolution of dissolved organic matter (DOM) in landfill leachate during a combination of biological and physical-chemical treatment consisting of partial nitritation-anammox (PN-Anammox) or nitrification-denitrification (N-DN) combined with granular active carbon adsorption (GAC). PN-Anammox resulted in higher nitrogen removal (81%), whereas N-DN required addition of an external carbon source to increase nitrogen removal from 24% to 56%. Four DOM components (C1 to C4) were identified by excitation-emission matrix-parallel factor analysis (EEM-PARAFAC). N-DN showed a greater ability to remove humic-like components (C1 and C3), while the protein-like component (C4) was better removed by PN-Anammox. Both biological treatment processes showed limited removal of the medium molecular humic-like component (C2). In addition, the synergistic effect of biological treatments and adsorption was studied. The combination of PN-Anammox and GAC adsorption could remove C4 completely and also showed a good removal efficiency for C1 and C2. The Thomas model of adsorption revealed that GAC had the maximum adsorption capacity for PN-Anammox treated leachate. This study demonstrated better removal of nitrogen and fluorescence DOM by a combination of PN-Anammox and GAC adsorption, and provides practical and technical support for improved landfill leachate treatment.


Asunto(s)
Carbón Orgánico , Contaminantes Químicos del Agua/análisis , Adsorción , Desnitrificación , Nitrificación
8.
Environ Sci Technol ; 53(18): 10803-10812, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31378062

RESUMEN

Hydrophilic divinylbenzene (DVB) (Bakerbond) has surfaced as a promising sorbent for active sampling of analytes from aqueous matrices over a very broad polarity range. Given this, hydrophilic DVB may likewise offer potential for passive sampling, if sorbent/water partitioning coefficients (Ksw) were to be available. In this work, static exposure batch experiments were performed to quantitatively study the equilibrium sorption of 131 environmentally relevant organic contaminants (P values ranging from -1.30 to 9.85) on hydrophilic DVB. The superior affinity of hydrophilic DVB, as compared to Oasis HLB, for compounds with a broad polarity range was confirmed by functional Fourier-transform infrared spectroscopy and Raman characterization, demonstrating the presence of carboxyl moieties. Concentration effects were studied by increasing compound concentrations in mixture experiments and resulted in the steroidal endocrine disrupting compounds in higher Ksw, while lower Ksw were obtained for the (alkyl)phenols, personal care products, pesticides, pharmaceuticals, and phthalates. Nevertheless, Ksw remained constant in the said design for equilibrium water concentrations at environmentally relevant seawater levels. An independent analysis of thermodynamic parameters (change in enthalpy, entropy, and Gibbs free energy) revealed the nature of the main partitioning processes. While polar (log P < 4) compounds were mainly served by physisorption, nonpolar (log P > 4) compounds also exhibited binding by multiple hydrogen bonding. In conclusion, this research facilitates the future application of hydrophilic DVB for active as well as passive sampling in the analysis of organic contaminants for monitoring purposes and for toxicity testing.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos de Vinilo
9.
New Phytol ; 218(2): 646-660, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29464725

RESUMEN

Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode-plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice-Meloidogyne graminicola interactions in a concentration-dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)-mediated defense against M. graminicola, and likewise the JA-induced defense against M. graminicola requires SLENDER RICE1 (SLR1)-mediated repression of the GA pathway. In contrast to observations from other plant-pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA-induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA-JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA-mediated defense response in rice against this nematode.


Asunto(s)
Ciclopentanos/farmacología , Giberelinas/farmacología , Oryza/inmunología , Oryza/parasitología , Oxilipinas/farmacología , Tylenchoidea/fisiología , Animales , Transporte Biológico/efectos de los fármacos , Susceptibilidad a Enfermedades , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Oryza/efectos de los fármacos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Tumores de Planta/parasitología , Tylenchoidea/efectos de los fármacos
10.
New Phytol ; 217(1): 305-319, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28905991

RESUMEN

Plant defense to microbial pathogens is often accompanied by significant growth inhibition. How plants merge immune system function with normal growth and development is still poorly understood. Here, we investigated the role of target of rapamycin (TOR), an evolutionary conserved serine/threonine kinase, in the plant defense response. We used rice as a model system and applied a combination of chemical, genetic, genomic and cell-based analyses. We demonstrate that ectopic expression of TOR and Raptor (regulatory-associated protein of mTOR), a protein previously demonstrated to interact with TOR in Arabidopsis, positively regulates growth and development in rice. Transcriptome analysis of rice cells treated with the TOR-specific inhibitor rapamycin revealed that TOR not only dictates transcriptional reprogramming of extensive gene sets involved in central and secondary metabolism, cell cycle and transcription, but also suppresses many defense-related genes. TOR overexpression lines displayed increased susceptibility to both bacterial and fungal pathogens, whereas plants with reduced TOR signaling displayed enhanced resistance. Finally, we found that TOR antagonizes the action of the classic defense hormones salicylic acid and jasmonic acid. Together, these results indicate that TOR acts as a molecular switch for the activation of cell proliferation and plant growth at the expense of cellular immunity.


Asunto(s)
Oryza/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Proliferación Celular/efectos de los fármacos , Ciclopentanos/metabolismo , Oryza/efectos de los fármacos , Oryza/genética , Oryza/crecimiento & desarrollo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo
11.
Anal Bioanal Chem ; 410(18): 4527-4539, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29796899

RESUMEN

Phytohormones are signaling and regulating metabolites involved in numerous plant processes, including growth, development, and responses to stress. Currently, the focus is on the analysis of multiple phytohormones in order to characterize crosstalk and hormone signaling networks. In this paper, representative phytohormones of the major classes are simultaneously determined in rice tissues by a generic solid-liquid extraction, followed by liquid chromatography and electrospray ionization high-resolution tandem mass spectrometry using a Q-Exactive™ instrument. After a thorough optimization of the sample preparation, the analytical method was fully validated toward the ultra-trace quantification of six a priori selected plant hormones using three scan modes of the quadrupole-Orbitrap instrument: full-scan high-resolution mass spectrometry, targeted single ion monitoring (t-SIM), and t-SIM followed by data-dependent tandem mass spectrometry. Overall, a similar quantitative performance was noticed for the different scan modes. The analytical method was successfully applied to measure basal phytohormone levels in six different rice accessions, comprising Oryza sativa ssp. japonica, indica, and Oryza glaberrima. Hormone concentrations were higher in shoots than in roots or at least similar. Except for a lower level of salicylic acid in shoots of O. glaberrima versus O. sativa, no other differences in hormone levels could be noticed that were dependent of the (sub)species assignment of the analyzed accessions. Making use of the benefits of full-scan high-resolution mass spectrometry, a first post-run suspect screening was performed, suggesting - based on accurate mass measurements and isotopic patterns - the possible presence of about 50 additional plant hormones in the rice tissues. Graphical abstract ᅟ.


Asunto(s)
Oryza/química , Reguladores del Crecimiento de las Plantas/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Límite de Detección , Oryza/clasificación , Reguladores del Crecimiento de las Plantas/aislamiento & purificación , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Extracción en Fase Sólida/métodos , Especificidad de la Especie
12.
Mol Plant Microbe Interact ; 30(3): 255-266, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28151048

RESUMEN

Magnaporthe oryzae (rice blast) and the root-knot nematode Meloidogyne graminicola are causing two of the most important pathogenic diseases jeopardizing rice production. Here, we show that root-knot nematode infestation on rice roots leads to important above-ground changes in plant immunity gene expression, which is correlated with significantly enhanced susceptibility to blast disease. A detailed metabolic analysis of oxidative stress responses and hormonal balances demonstrates that the above-ground tissues have a disturbed oxidative stress level, with accumulation of H2O2, as well as hormonal disturbances. Moreover, double infection experiments on an oxidative stress mutant and an auxin-deficient rice line indicate that the accumulation of auxin in the above-ground tissue is at least partly responsible for the blast-promoting effect of root-knot nematode infection.


Asunto(s)
Oryza/parasitología , Enfermedades de las Plantas/parasitología , Raíces de Plantas/parasitología , Tylenchoidea/fisiología , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Magnaporthe/fisiología , Oryza/genética , Oryza/microbiología , Estrés Oxidativo , Enfermedades de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Brotes de la Planta/fisiología , Transcriptoma/genética
13.
Plant Physiol ; 170(3): 1831-47, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26829979

RESUMEN

Gibberellins are a class of tetracyclic plant hormones that are well known to promote plant growth by inducing the degradation of a class of nuclear growth-repressing proteins, called DELLAs. In recent years, GA and DELLAs are also increasingly implicated in plant responses to pathogen attack, although our understanding of the underlying mechanisms is still limited, especially in monocotyledonous crop plants. Aiming to further decipher the molecular underpinnings of GA- and DELLA-modulated plant immunity, we studied the dynamics and impact of GA and DELLA during infection of the model crop rice (Oryza sativa) with four different pathogens exhibiting distinct lifestyles and infection strategies. Opposite to previous findings in Arabidopsis (Arabidopsis thaliana), our findings reveal a prominent role of the DELLA protein Slender Rice1 (SLR1) in the resistance toward (hemi)biotrophic but not necrotrophic rice pathogens. Moreover, contrary to the differential effect of DELLA on the archetypal defense hormones salicylic acid (SA) and jasmonic acid (JA) in Arabidopsis, we demonstrate that the resistance-promoting effect of SLR1 is due at least in part to its ability to boost both SA- and JA-mediated rice defenses. In a reciprocal manner, we found JA and SA treatment to interfere with GA metabolism and stabilize SLR1. Together, these findings favor a model whereby SLR1 acts as a positive regulator of hemibiotroph resistance in rice by integrating and amplifying SA- and JA-dependent defense signaling. Our results highlight the differences in hormone defense networking between rice and Arabidopsis and underscore the importance of GA and DELLA in molding disease outcomes.


Asunto(s)
Ciclopentanos/metabolismo , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transducción de Señal , Ascomicetos/fisiología , Western Blotting , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Magnaporthe/fisiología , Mutación , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rhizoctonia/fisiología , Especificidad de la Especie , Xanthomonas/fisiología
14.
Environ Sci Technol ; 51(24): 14233-14243, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29172510

RESUMEN

New robust correlation models for real-time monitoring and control of trace organic contaminant (TrOC) removal by ozonation are presented, based on UVA254 and fluorescence surrogates, and developed considering kinetic information. The abatement patterns of TrOCs had inflected shapes, controlled by the reactivity of TrOCs toward ozone and HO• radicals. These novel and generic correlation models will be of importance for WRRF operators to reduce operational costs and minimize byproduct formation. Both UVA254 and fluorescence surrogates could be used to control ΔTrOC, although fluorescence measurements indicated a slightly better reproducibility and an enlarged control range. The generic framework was validated for several WRRFs and correlations for any compound with known kinetic information could be developed solely using the second order reaction rate constant with ozone (kO3). Two distinct reaction phases were defined for which separate linear correlations were obtained. The first was mainly ozone controlled, while the second phase was more related to HO• reactions. Furthermore, parallel factor analysis of the fluorescence spectra enabled monitoring of multiple types of organic matter with different O3 and HO• reactivity. This knowledge is of value for kinetic modeling frameworks and for achieving a better understanding of the occurring changes of organic matter during ozonation.


Asunto(s)
Ozono , Eliminación de Residuos Líquidos , Purificación del Agua , Reproducibilidad de los Resultados , Aguas Residuales , Contaminantes Químicos del Agua
15.
Nature ; 479(7374): 487-92, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22113690

RESUMEN

The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T. urticae has the smallest sequenced arthropod genome. Compared with other arthropods, the spider mite genome shows unique changes in the hormonal environment and organization of the Hox complex, and also reveals evolutionary innovation of silk production. We find strong signatures of polyphagy and detoxification in gene families associated with feeding on different hosts and in new gene families acquired by lateral gene transfer. Deep transcriptome analysis of mites feeding on different plants shows how this pest responds to a changing host environment. The T. urticae genome thus offers new insights into arthropod evolution and plant-herbivore interactions, and provides unique opportunities for developing novel plant protection strategies.


Asunto(s)
Adaptación Fisiológica/genética , Genoma/genética , Herbivoria/genética , Tetranychidae/genética , Tetranychidae/fisiología , Adaptación Fisiológica/fisiología , Animales , Ecdisterona/análogos & derivados , Ecdisterona/genética , Evolución Molecular , Fibroínas/genética , Regulación de la Expresión Génica , Transferencia de Gen Horizontal/genética , Genes Homeobox/genética , Genómica , Herbivoria/fisiología , Datos de Secuencia Molecular , Muda/genética , Familia de Multigenes/genética , Nanoestructuras/química , Plantas/parasitología , Seda/biosíntesis , Seda/química , Transcriptoma/genética
16.
J Environ Manage ; 203(Pt 2): 774-781, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27666646

RESUMEN

Several scenarios are available to landfilling facilities to effectively treat leachate at the lowest possible cost. In this study, the performance of various leachate treatment sequences to remove COD and nitrogen from a leachate stream and the associated cost are presented. The results show that, to achieve 100% nitrogen removal, autotrophic nitrogen removal (ANR) or a combination of ANR and nitrification - denitrification (N-dN) is more cost effective than using only the N-dN process (0.58 €/m3) without changing the leachate polishing costs associated with granular activated carbon (GAC). Treatment of N-dN effluent by ozonation or coagulation led to the reduction of the COD concentration by 10% and 59% respectively before GAC adsorption. This reduced GAC costs and subsequently reduced the overall treatment costs by 7% (ozonation) and 22% (coagulation). On the contrary, using Fenton oxidation to reduce the COD concentration of N-dN effluent by 63% increased the overall leachate treatment costs by 3%. Leachate treatment sequences employing ANR for nitrogen removal followed by ozonation or Fenton or coagulation for COD removal and final polishing with GAC are on average 33% cheaper than a sequence with N-dN + GAC only. When ANR is the preceding step and GAC the final step, choice of AOP i.e., ozonation or Fenton did not affect the total treatment costs which amounted to 1.43 (ozonation) and 1.42 €/m3 (Fenton). In all the investigated leachate treatment trains, the sequence with ANR + coagulation + GAC is the most cost effective at 0.94 €/m3.


Asunto(s)
Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua , Adsorción , Compuestos de Amonio , Desnitrificación
17.
Water Sci Technol ; 76(1-2): 236-246, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28708628

RESUMEN

Ozonation and three (biological) filtration techniques (trickling filtration (TF), slow sand filtration (SSF) and biological activated carbon (BAC) filtration) have been evaluated in different combinations as tertiary treatment for municipal wastewater effluent. The removal of 18 multi-class pharmaceuticals, as model trace organic contaminants (TrOCs), has been studied. (Biological) activated carbon filtration could reduce the amount of TrOCs significantly (>99%) but is cost-intensive for full-scale applications. Filtration techniques mainly depending on biodegradation mechanisms (TF and SSF) are found to be inefficient for TrOCs removal as a stand alone technique. Ozonation resulted in 90% removal of the total amount of quantified TrOCs, but a post-ozonation step is needed to cope with an increased unselective toxicity. SSF following ozonation showed to be the only technique able to reduce the unselective toxicity to the same level as before ozonation. In view of process control, innovative correlation models developed for the monitoring and control of TrOC removal during ozonation, are verified for their applicability during ozonation in combination with TF, SSF or BAC. Particularly for the poorly ozone reactive TrOCs, statistically significant models were obtained that correlate TrOC removal and reduction in UVA254 as an online measured surrogate parameter.


Asunto(s)
Filtración/métodos , Ozono/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Carbón Orgánico/química , Filtración/instrumentación , Dióxido de Silicio/química , Eliminación de Residuos Líquidos/instrumentación
18.
Anal Chem ; 87(4): 2170-7, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25565253

RESUMEN

Modern high-resolution mass spectrometry (HRMS) enables full-spectrum trace level analysis of emerging environmental organic contaminants. This raises the opportunity for post-acquisition suspect screening when no reference standards are a priori available. When setting up a conventional screening identification train based on successively different identification criteria including mass error and isotope fit, the false negative rate typically accumulates upon advancing through the decision tree. The challenge is thus to elaborate a well-balanced screening, in which the different criteria are equally stringent, leading to a controllable number of false negatives. Presented is a novel suspect screening approach using liquid-chromatography Orbitrap HRMS. Based on a multivariate statistical model, the screening takes into account the accurate mass error of the mono isotopic ion and up to three isotopes, isotope ratios, and a peak/noise filter. As such, for the first time, controlling the overall false negative rate of the screening algorithm to a desired level (5% in this study) is achieved. Simultaneously, a well-balanced identification decision is guaranteed taking the different identification criteria as a whole in a holistic statistical approach. Taking into account 1, 2, and 3 isotopes decreases the false positive rate from 22, 2.8 to <0.3%, but the cost of increasing the median limits of identification from 200, 2000 to 2062 ng L(-1), respectively, should also be considered. As proof of concept, 7 biologically treated wastewaters were screened toward 77 suspect pharmaceuticals resulting in the indicative identification of 25 suspects. Subsequently obtained reference standards allowed confirmation for 19 out of these 25 pharmaceutical contaminants.


Asunto(s)
Espectrometría de Masas/métodos , Preparaciones Farmacéuticas/análisis , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Cromatografía Liquida/métodos , Análisis Multivariante
19.
Commun Agric Appl Biol Sci ; 80(1): 57-62, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26630756

RESUMEN

A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.


Asunto(s)
Carbono/química , Precipitación Química , Ozono , Contaminantes Químicos del Agua/química , Adsorción , Cloruros/química , Compuestos Férricos/química , Eliminación de Residuos/instrumentación , Eliminación de Residuos/métodos , Administración de Residuos
20.
Anal Bioanal Chem ; 406(11): 2533-47, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24633561

RESUMEN

The ever-growing number of emerging micropollutants such as pharmaceuticals requests rapid and sensitive full-spectrum analytical techniques. Time-of-flight high-resolution mass spectrometry (TOF-HRMS) is a promising alternative for the state-of-the-art tandem mass spectrometry instruments because of its ability to simultaneously screen for a virtually unlimited number of suspect analytes and to perform target quantification. The challenge for such suspect screening is to develop a strategy, which minimizes the false-negative rate without restraining numerous false-positives. At the same time, omitting laborious sample enrichment through large-volume injection ultra-performance liquid chromatography (LVI-UPLC) avoids selective preconcentration. A suspect screening strategy was developed using LVI-UPLC-TOF-MS aiming the detection of 69 multi-class pharmaceuticals in surface water without the a priori availability of analytical standards. As a novel approach, the screening takes into account the signal-intensity-dependent accurate mass error of TOF-MS, hereby restraining 95 % of the measured suspect pharmaceuticals present in surface water. Application on five Belgian river water samples showed the potential of the suspect screening approach, as exemplified by a false-positive rate not higher than 15 % and given that 30 out of 37 restrained suspect compounds were confirmed by the retention time of analytical standards. Subsequently, this paper discusses the validation and applicability of the LVI-UPLC full-spectrum HRMS method for target quantification of the 69 pharmaceuticals in surface water. Analysis of five Belgian river water samples revealed the occurrence of 17 pharmaceuticals in a concentration range of 17 ng L(-1) up to 3.1 µg L(-1).


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Preparaciones Farmacéuticas/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Cromatografía Liquida/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA