Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Phys Rev Lett ; 132(21): 218202, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38856243

RESUMEN

In this combined experimental and simulation study, we utilize bond-order topology to quantitatively match particle volume fraction in mechanically uniformly compressed colloidal suspensions with temperature in atomistic simulations. The obtained mapping temperature is above the dynamical glass transition temperature, indicating that the colloidal systems examined are structurally most like simulated undercooled liquids. Furthermore, the structural mapping procedure offers a unifying framework for quantifying relaxation in arrested colloidal systems.

2.
Soft Matter ; 20(7): 1620-1628, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38275297

RESUMEN

Colloidal crystals, such as opals, display bright and iridescent colors when assembled from submicron particles. While the brightness and purity of iridescent colors are well suited for ornaments, signaling, and anticounterfeiting, their angle dependence limits the range of their applications. In contrast, colloidal glasses display angle-independent structural color that is tunable by the size and local arrangement of particles. However, the angle-independent color of colloidal photonic glasses usually yields pastel colors that are not vivid due to the disorder in the particle assembly. Here, we report an electrophoretic assembly platform for tuning the level of disorder in the particle system from a colloidal crystal to a colloidal glass. Altering the electric field in our electrophoretic platform allows for deliberate control of the assembly kinetics and thus the level of order in the particle assembly. With the help of microscopy, X-ray scattering, and optical characterization, we show that the photonic properties of the assembled films can be tuned with the applied electric field. Our analyses reveal that angle-independent color with optimum color brightness can be achieved in typical colloidal suspensions when the range of order is at ∼3.2 particle diameters, which is expected at a moderate electric field of ∼15 V mm-1.

3.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34753822

RESUMEN

The ability to regulate interfacial and wetting properties is highly demanded in anti-icing, anti-biofouling, and medical and energy applications. Recent work on liquid-infused systems achieved switching wetting properties, which allow us to turn between slip and pin states. However, patterning the wetting of surfaces in a dynamic fashion still remains a challenge. In this work, we use programmable wetting to activate and propel droplets over large distances. We achieve this with liquid-infused soft magnetic carpets (SMCs) that consist of pillars that are responsive to external magnetic stimuli. Liquid-infused SMCs, which are sticky for a water droplet, become slippery upon application of a magnetic field. Application of a patterned magnetic field results in a patterned wetting on the SMC. A traveling magnetic field wave translates the patterned wetting on the substrate, which allows droplet manipulation. The droplet speed increases with an increased contact angle and with the droplet size, which offers a potential method to sort and separate droplets with respect to their contact angle or size. Furthermore, programmable control of the droplet allows us to conduct reactions by combining droplets loaded with reagents. Such an ability of conducting small-scale reactions on SMCs has the potential to be used for automated analytical testing, diagnostics, and screening, with a potential to reduce the chemical waste.

4.
Chimia (Aarau) ; 76(10): 833-840, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-38069695

RESUMEN

Living organisms frequently use structural color for coloration as an alternative mechanism to chemical pigmentation. Recently there has been a growing interest to translate structural color into synthetic materials as a more durable and less hazardous alternative to conventional pigments. Efforts to fabricate structurally colored materials take place in different fronts, from 3D printing to spray-coating and roll-to-roll casting. Stability, performance, and quality of the color, the environmental impact of the materials or their manufacturing methods are some of the heavily researched topics we discuss. First, we highlight recent examples of large-scale manufacturing technologies to fabricate structurally colored objects. Second, we discuss the current challenges to be tackled to create perfect appearances which aim at the full color gamut while caring for environmental concerns. Finally, we discuss possible scenarios that could be followed in order to involve other manufacturing methods for creating structurally colored objects.

5.
Soft Matter ; 17(4): 1037-1047, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33289746

RESUMEN

Precise control over the motion of magnetically responsive particles in fluidic chambers is important for probing and manipulating tasks in prospective microrobotic and bio-analytical platforms. We have previously exploited such colloids as shuttles for the microscale manipulation of objects. Here, we study the rolling motion of magnetically driven Janus colloids on solid substrates under the influence of an orthogonal external electric field. Electrically induced attractive interactions were used to tune the load on the Janus colloid and thereby the friction with the underlying substrate, leading to control over the forward velocity of the particle. Our experimental data suggest that the frictional coupling required to achieve translation, transitions from a hydrodynamic regime to one of mixed contact coupling with increasing load force. Based on this insight, we show that our colloidal microrobots can probe the local friction coefficient of various solid surfaces, which makes them potentially useful as tribological microsensors. Lastly, we precisely manipulate porous cargos using our colloidal rollers, a feat that holds promise for bio-analytical applications.

6.
Nat Mater ; 18(11): 1244-1251, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31235903

RESUMEN

Field-directed and self-propelled colloidal assembly have been used to build micromachines capable of performing complex motions and functions. However, integrating heterogeneous components into micromachines with specified structure, dynamics and function is still challenging. Here, we describe the dynamic self-assembly of mobile micromachines with desired configurations through pre-programmed physical interactions between structural and motor units. The assembly is driven by dielectrophoretic interactions, encoded in the three-dimensional shape of the individual parts. Micromachines assembled from magnetic and self-propelled motor parts exhibit reconfigurable locomotion modes and additional rotational degrees of freedom that are not available to conventional monolithic microrobots. The versatility of this site-selective assembly strategy is demonstrated on different reconfigurable, hierarchical and three-dimensional micromachine assemblies. Our results demonstrate how shape-encoded assembly pathways enable programmable, reconfigurable mobile micromachines. We anticipate that the presented design principle will advance and inspire the development of more sophisticated, modular micromachines and their integration into multiscale hierarchical systems.

7.
Nature ; 503(7474): 99-103, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24141949

RESUMEN

Interest in assemblies of colloidal particles has long been motivated by their applications in photonics, electronics, sensors and microlenses. Existing assembly schemes can position colloids of one type relatively flexibly into a range of desired structures, but it remains challenging to produce multicomponent lattices, clusters with precisely controlled symmetries and three-dimensional assemblies. A few schemes can efficiently produce complex colloidal structures, but they require system-specific procedures. Here we show that magnetic field microgradients established in a paramagnetic fluid can serve as 'virtual moulds' to act as templates for the assembly of large numbers (∼10(8)) of both non-magnetic and magnetic colloidal particles with micrometre precision and typical yields of 80 to 90 per cent. We illustrate the versatility of this approach by producing single-component and multicomponent colloidal arrays, complex three-dimensional structures and a variety of colloidal molecules from polymeric particles, silica particles and live bacteria and by showing that all of these structures can be made permanent. In addition, although our magnetic moulds currently resemble optical traps in that they are limited to the manipulation of micrometre-sized objects, they are massively parallel and can manipulate non-magnetic and magnetic objects simultaneously in two and three dimensions.


Asunto(s)
Coloides/química , Fenómenos Magnéticos , Iones/química , Viabilidad Microbiana , Nanopartículas/química , Polímeros/química , Dióxido de Silicio/química , Staphylococcus aureus/química , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/ultraestructura
8.
Proc Natl Acad Sci U S A ; 113(17): 4623-8, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27071113

RESUMEN

Living organisms often combine soft and hard anisotropic building blocks to fabricate composite materials with complex microstructures and outstanding mechanical properties. An optimum design and assembly of the anisotropic components reinforces the material in specific directions and sites to best accommodate multidirectional external loads. Here, we fabricate composite films with periodic modulation of the soft-hard microstructure by simultaneously using electric and magnetic fields. We exploit forefront directed-assembly approaches to realize highly demanded material microstructural designs and showcase a unique example of how one can bridge colloidal sciences and composite technology to fabricate next-generation advanced structural materials. In the proof-of-concept experiments, electric fields are used to dictate the position of the anisotropic particles through dielectrophoresis, whereas a rotating magnetic field is used to control the orientation of the particles. By using such unprecedented control over the colloidal assembly process, we managed to fabricate ordered composite microstructures with up to 2.3-fold enhancement in wear resistance and unusual site-specific hardness that can be locally modulated by a factor of up to 2.5.

9.
Langmuir ; 34(21): 6147-6160, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29719151

RESUMEN

In food-grade emulsions, particles with an appropriate surface modification can be used to replace surfactants and potentially enhance the stability of emulsions. During the life cycle of products based on such emulsions, they can be exposed to a broad range of pH conditions and hence it is crucial to understand how pH changes affect stability of emulsions stabilized by particles. Here, we report on a comprehensive study of the stability, microstructure, and macroscopic behavior of pH-controlled oil-in-water emulsions containing silica nanoparticles modified with chitosan, a food-grade polycation. We found that the modified colloidal particles used as stabilizers behave differently depending on the pH, resulting in unique emulsion structures at multiple length scales. Our findings are rationalized in terms of the different emulsion stabilization mechanisms involved, which are determined by the pH-dependent charges and interactions between the colloidal building blocks of the system. At pH 4, the silica particles are partially hydrophobized through chitosan modification, favoring their adsorption at the oil-water interface and the formation of Pickering emulsions. At pH 5.5, the particles become attractive and the emulsion is stabilized by a network of agglomerated particles formed between the droplets. Finally, chitosan aggregates form at pH 9 and these act as the emulsion stabilizers under alkaline conditions. These insights have important implications for the processing and use of particle-stabilized emulsions. On one hand, changes in pH can lead to undesired macroscopic phase separation or coalescence of oil droplets. On the other hand, the pH effect on emulsion behavior can be harnessed in industrial processing, either to tune their flow response by altering the pH between processing stages or to produce pH-responsive emulsions that enhance the functionality of the emulsified end products.


Asunto(s)
Quitosano/química , Emulsiones/química , Nanopartículas/química , Dióxido de Silicio/química , Concentración de Iones de Hidrógeno , Relación Estructura-Actividad
10.
Soft Matter ; 14(23): 4741-4749, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29799053

RESUMEN

Active colloids show non-equilibrium behavior that departs from classical Brownian motion, thus providing a platform for novel fundamental phenomena and for enticing possible applications ranging from water treatment to medicine and microrobotics. Although the physics, motion mechanisms and guidance have been extensively investigated, active colloids are rarely exploited to simultaneously guide and transport micron-sized objects in a controllable and reversible manner. Here, we use autonomous active Janus particles as colloidal shuttles to controllably transport cargo at the microscale using external electric and magnetic fields. The active motion arises from the metallodielectric characteristics of the Janus particles, which allows them to also trap, transport and release cargo particles through dielectrophoretic interactions induced by an AC electric field. The ferromagnetic nature of the nickel layer that forms the metallic hemisphere of the Janus colloids provides an additional mechanism to direct the motion of the shuttle using an external magnetic field. With this highly programmable colloidal system, we are able to harness active colloid motion and use it to transport cargo particles to specific destinations through a pre-defined route. A simple analytical model is derived to successfully describe the motion of the shuttle-cargo assembly in response to the applied electrical field. The high level of control on cargo pick-up, transport and release leads to a powerful delivery tool, which could eventually be used in microactuators, microfluidics or for controlled delivery within organ-on-a-chip devices.

11.
Soft Matter ; 13(17): 3182-3189, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28397927

RESUMEN

For decades, scientists and engineers have strived to design means of assembling colloids into ordered structures. By now, the literature is quite peppered with reports of colloidal assemblies. However, the available methods can assemble only a narrow range of structures or are applicable to specific types of colloids. There are still only few generic methods that would lead to arbitrary colloidal arrays or would shape colloidal assemblies into predesigned structures. Here, we first discuss in detail how to spatially control the assembly and crystallization of colloids through the balance of dielectrophoretic and dipolar forces. Furthermore, we demonstrate how to flexibly program and shape arrays of 3D microstructures that can be permanently affixed by in situ UV polymerization and calcination by using two facing similar or distinct micro-fabricated electrodes.

12.
Soft Matter ; 13(1): 88-100, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27906392

RESUMEN

This study explored the application of localized electric fields for reversible directed self-assembly of colloidal particles in 3 dimensions. Electric field microgradients, arising from the use of micro-patterned electrodes, were utilized to direct the localization and self-assembly of polarizable (charged) particles resulting from a combination of dielectrophoretic and multipolar forces. Deionized dispersions of spherical and ellipsoidal core-shell microgels were employed for investigating their assembly under an external alternating electric field. We demonstrated that the frequency of the field allowed for an exquisite control over the localization of the particles and their self-assembled structures near the electrodes. We extended this approach to concentrated binary dispersions consisting of polarizable and less polarizable composite microgels. Furthermore, we utilized the thermosensitivity of the microgels to adjust the effective volume fraction and the dynamics of the system, which provided the possibility to dynamically "solidify" the assembly of the field-responsive particles by a temperature quench from their initial fluid state into an arrested crystalline state. Reversible solidification enables us to re-write/reconstruct various 3 dimensional assemblies by varying the applied field frequency.

13.
Langmuir ; 31(25): 6965-70, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26061672

RESUMEN

We report on robust synthetic microcompartments with hydrophobically gated shells that can reversibly swell and contract multiple times upon external stimuli. The gating mechanism relies on a hydrophilic-hydrophobic transition of a polymer layer that is grafted on inorganic colloidosomes using atom-transfer radical polymerization. As a result of such a transition, the initially tight hydrophobic shell becomes permeable to the diffusion of hydrophilic solutes across the microcompartment walls. Surprisingly, the microcompartments are strong enough to retain their spherical shape during several swelling and contraction cycles. This provides a powerful alternative platform for the creation of synthetic microreactors and protocells that interact with the surrounding media through a simple gating mechanism and are sufficiently robust for further engineering of increasingly complex compartmentalized structures.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Nylons/química , Difusión , Polimerizacion
14.
Adv Mater ; 35(46): e2302868, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37470316

RESUMEN

Colloidal glasses display angle-independent structural color that is tunable by the size and local arrangement of sub-micrometer particles. While films, droplets, and microcapsules with isotropic structural color have been demonstrated, the shaping of colloidal glasses in three dimensions remains an open manufacturing challenge. Here, a light-based printing platform for the shaping of colloidal glasses into 3D objects featuring complex geometries and vivid structural color after thermal treatment is reported. Rheology, photopolymerization, and calcination experiments are performed to design the photoreactive resins leading to printable colloidal glasses. With the help of microscopy, scattering, and optical characterization, it is shown that the photonic properties of the printed objects reflect the locally ordered microstructure of the glass. The capability of the platform in creating 3D objects with isotropic structural color is illustrated by printing lattices and miniaturized sculpture replicas with unique shapes and multimaterial designs.

15.
Adv Sci (Weinh) ; 10(25): e2301895, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37357135

RESUMEN

Limbless crawling on land requires breaking symmetry of the friction with the ground and exploiting an actuation mechanism to generate propulsive forces. Here, kirigami cuts are introduced into a soft magnetic sheet that allow to achieve effective crawling of untethered soft robots upon application of a rotating magnetic field. Bidirectional locomotion is achieved under clockwise and counterclockwise rotating magnetic fields with distinct locomotion patterns and crawling speed in forward and backward propulsions. The crawling and deformation profiles of the robot are experimentally characterized and combined with detailed multiphysics numerical simulations to extract locomotion mechanisms in both directions. It is shown that by changing the shape of the cuts and orientation of the magnet the robot can be steered, and if combined with translational motion of the magnet, complex crawling paths are programed. The proposed magnetic kirigami robot offers a simple approach to developing untethered soft robots with programmable motion.

16.
Angew Chem Int Ed Engl ; 51(45): 11249-53, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-22893362

RESUMEN

Yanking the chain: a general method for the preparation of colloidal analogues of polymer chains was developed. The flexibility of these chains can be tuned by applying electric fields in combination with their subjection to simple linkage-forming procedures.

17.
Nat Commun ; 13(1): 4397, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906208

RESUMEN

Structural color is frequently exploited by living organisms for biological functions and has also been translated into synthetic materials as a more durable and less hazardous alternative to conventional pigments. Additive manufacturing approaches were recently exploited for the fabrication of exquisite photonic objects, but the angle-dependence observed limits a broader application of structural color in synthetic systems. Here, we propose a manufacturing platform for the 3D printing of complex-shaped objects that display isotropic structural color generated from photonic colloidal glasses. Structurally colored objects are printed from aqueous colloidal inks containing monodisperse silica particles, carbon black, and a gel-forming copolymer. Rheology and Small-Angle-X-Ray-Scattering measurements are performed to identify the processing conditions leading to printed objects with tunable structural colors. Multimaterial printing is eventually used to create complex-shaped objects with multiple structural colors using silica and carbon as abundant and sustainable building blocks.

18.
Langmuir ; 27(5): 1626-34, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21218840

RESUMEN

Titania is an important material in modern materials science, chemistry, and physics because of its special catalytic, electric, and optical properties. Here, we describe a novel method to synthesize colloidal particles with a crystalline titania, anatase core and an amorphous titania-shell structure. We demonstrate seeded growth of titania onto titania particles with accurate particle size tunability. The monodispersity is improved to such an extent so that colloidal crystallization of the grown microspheres becomes feasible. Furthermore, seeded growth provides separate manipulation of the core and shell. We tuned the refractive index of the amorphous shell between 1.55 and 2.3. In addition, the particles show luminescence when trace amounts of aminopropyl-triethoxysilane are incorporated into the titania matrix and are calcined at 450 °C. Our novel colloids may be useful for optical materials and technologies such as photonic crystals and optical trapping.


Asunto(s)
Mediciones Luminiscentes , Titanio/química , Coloides , Microscopía Confocal , Tamaño de la Partícula , Transición de Fase , Propilaminas , Silanos/química , Temperatura
19.
Nano Lett ; 10(5): 1907-11, 2010 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-20387799

RESUMEN

We study the phase behavior of bowl-shaped (nano)particles using confocal microscopy and computer simulations. Experimentally, we find the formation of a wormlike fluid phase in which the bowl-shaped particles have a strong tendency to stack on top of each other. However, using free energy calculations in computer simulations, we show that the wormlike phase is out-of-equilibrium and that the columnar phase is thermodynamically stable for sufficiently deep bowls and high densities. In addition, we employ a novel technique based on simulated annealing to predict the crystal structures for shallow bowls. We find four exotic new crystal structures and we determine their region of stability using free energy calculations. We discuss the implications of our results for the development of materials consisting of molecular mesogens or nanoparticles.


Asunto(s)
Cristalización/métodos , Modelos Químicos , Modelos Moleculares , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Coloides/química , Simulación por Computador , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
20.
Adv Sci (Weinh) ; 8(21): e2102510, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34528414

RESUMEN

One of the major challenges in modern robotics is controlling micromanipulation by active and adaptive materials. In the respiratory system, such actuation enables pathogen clearance by means of motile cilia. While various types of artificial cilia have been engineered recently, they often involve complex manufacturing protocols and focus on transporting liquids only. Here, soft magnetic carpets are created via an easy self-assembly route based on the Rosensweig instability. These carpets can transport not only liquids but also solid objects that are larger and heavier than the artificial cilia, using a crowd-surfing effect.This amphibious transportation is locally and reconfigurably tunable by simple micromagnets or advanced programmable magnetic fields with a high degree of spatial resolution. Two surprising cargo reversal effects are identified and modeled due to collective ciliary motion and nontrivial elastohydrodynamics. While the active carpets are generally applicable to integrated control systems for transport, mixing, and sorting, these effects can also be exploited for microfluidic viscosimetry and elastometry.


Asunto(s)
Hidrodinámica , Magnetismo , Órganos Artificiales , Cilios/fisiología , Elasticidad , Campos Magnéticos , Robótica , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA